Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Single synapse indicators of impaired glutamate clearance derived from fast iGlu u imaging of cortical afferents in the striatum of normal and Huntington (Q175) mice.

Dvorzhak A, Helassa N, Török K, Schmitz D, Grantyna R.

J Neurosci. 2019 Feb 28. pii: 2865-18. doi: 10.1523/JNEUROSCI.2865-18.2019. [Epub ahead of print]

PMID:
30819797
2.

Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice.

Rothe T, Deliano M, Wójtowicz AM, Dvorzhak A, Harnack D, Paul S, Vagner T, Melnick I, Stark H, Grantyn R.

Neuroscience. 2015 Dec 17;311:519-38. doi: 10.1016/j.neuroscience.2015.10.039. Epub 2015 Nov 4.

PMID:
26546830
3.

Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice.

Dvorzhak A, Vagner T, Kirmse K, Grantyn R.

J Neurosci. 2016 May 4;36(18):4959-75. doi: 10.1523/JNEUROSCI.0316-16.2016.

4.

Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses.

Helassa N, Dürst CD, Coates C, Kerruth S, Arif U, Schulze C, Wiegert JS, Geeves M, Oertner TG, Török K.

Proc Natl Acad Sci U S A. 2018 May 22;115(21):5594-5599. doi: 10.1073/pnas.1720648115. Epub 2018 May 7.

5.

Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3.

Wójtowicz AM, Dvorzhak A, Semtner M, Grantyn R.

Front Neural Circuits. 2013 Nov 26;7:188. doi: 10.3389/fncir.2013.00188. eCollection 2013.

6.

Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease.

Parievsky A, Moore C, Kamdjou T, Cepeda C, Meshul CK, Levine MS.

Neurobiol Dis. 2017 Dec;108:29-44. doi: 10.1016/j.nbd.2017.07.020. Epub 2017 Jul 27.

7.

Astrocytes and presynaptic plasticity in the striatum: Evidence and unanswered questions.

Dvorzhak A, Melnick I, Grantyn R.

Brain Res Bull. 2018 Jan;136:17-25. doi: 10.1016/j.brainresbull.2017.01.001. Epub 2017 Jan 6. Review.

PMID:
28069435
8.

Amyloid-β1-42 Disrupts Synaptic Plasticity by Altering Glutamate Recycling at the Synapse.

Varga E, Juhász G, Bozsó Z, Penke B, Fülöp L, Szegedi V.

J Alzheimers Dis. 2015;45(2):449-56. doi: 10.3233/JAD-142367.

PMID:
25547631
9.

Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.

Kolodziejczyk K, Raymond LA.

Neurobiol Dis. 2016 Feb;86:62-74. doi: 10.1016/j.nbd.2015.11.020. Epub 2015 Nov 24.

PMID:
26621114
10.

Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.

Wu J, Ryskamp DA, Liang X, Egorova P, Zakharova O, Hung G, Bezprozvanny I.

J Neurosci. 2016 Jan 6;36(1):125-41. doi: 10.1523/JNEUROSCI.1038-15.2016.

11.

Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing.

Goubard V, Fino E, Venance L.

J Physiol. 2011 May 1;589(Pt 9):2301-19. doi: 10.1113/jphysiol.2010.203125. Epub 2011 Mar 8.

12.

Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice.

Deng YP, Wong T, Bricker-Anthony C, Deng B, Reiner A.

Neurobiol Dis. 2013 Dec;60:89-107. doi: 10.1016/j.nbd.2013.08.009. Epub 2013 Aug 19.

13.

Dysfunctional Calcium and Glutamate Signaling in Striatal Astrocytes from Huntington's Disease Model Mice.

Jiang R, Diaz-Castro B, Looger LL, Khakh BS.

J Neurosci. 2016 Mar 23;36(12):3453-70. doi: 10.1523/JNEUROSCI.3693-15.2016.

14.

Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.

Buren C, Parsons MP, Smith-Dijak A, Raymond LA.

Neurobiol Dis. 2016 Mar;87:80-90. doi: 10.1016/j.nbd.2015.12.009. Epub 2015 Dec 19.

PMID:
26711622
15.

Corticostriatal dysfunction underlies diminished striatal ascorbate release in the R6/2 mouse model of Huntington's disease.

Dorner JL, Miller BR, Klein EL, Murphy-Nakhnikian A, Andrews RL, Barton SJ, Rebec GV.

Brain Res. 2009 Sep 22;1290:111-20. doi: 10.1016/j.brainres.2009.07.019. Epub 2009 Jul 16.

16.

Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease.

Smith GA, Rocha EM, McLean JR, Hayes MA, Izen SC, Isacson O, Hallett PJ.

Hum Mol Genet. 2014 Sep 1;23(17):4510-27. doi: 10.1093/hmg/ddu166. Epub 2014 Apr 12.

PMID:
24728190
17.

Altered Synaptic Vesicle Release and Ca2+ Influx at Single Presynaptic Terminals of Cortical Neurons in a Knock-in Mouse Model of Huntington's Disease.

Chen S, Yu C, Rong L, Li CH, Qin X, Ryu H, Park H.

Front Mol Neurosci. 2018 Dec 24;11:478. doi: 10.3389/fnmol.2018.00478. eCollection 2018.

18.
19.

Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease.

Indersmitten T, Tran CH, Cepeda C, Levine MS.

J Neurophysiol. 2015 Apr 1;113(7):2953-66. doi: 10.1152/jn.01056.2014. Epub 2015 Feb 11.

20.

Pharmacological inhibitions of glutamate transporters EAAT1 and EAAT2 compromise glutamate transport in photoreceptor to ON-bipolar cell synapses.

Tse DY, Chung I, Wu SM.

Vision Res. 2014 Oct;103:49-62. doi: 10.1016/j.visres.2014.07.020. Epub 2014 Aug 22.

Supplemental Content

Support Center