Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

A tetracycline-dependent ribozyme switch allows conditional induction of gene expression in Caenorhabditis elegans.

Wurmthaler LA, Sack M, Gense K, Hartig JS, Gamerdinger M.

Nat Commun. 2019 Jan 30;10(1):491. doi: 10.1038/s41467-019-08412-w.

2.

Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes.

Beilstein K, Wittmann A, Grez M, Suess B.

ACS Synth Biol. 2015 May 15;4(5):526-34. doi: 10.1021/sb500270h. Epub 2014 Oct 27.

PMID:
25265236
3.

Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity.

Bates EA, Victor M, Jones AK, Shi Y, Hart AC.

J Neurosci. 2006 Mar 8;26(10):2830-8.

4.

Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin.

Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ.

Hum Mol Genet. 2006 Mar 15;15(6):1025-41. Epub 2006 Feb 6.

PMID:
16461334
5.

Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans.

Jia K, Hart AC, Levine B.

Autophagy. 2007 Jan-Feb;3(1):21-5. Epub 2007 Jan 23.

PMID:
17172799
6.

Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity.

Faber PW, Voisine C, King DC, Bates EA, Hart AC.

Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17131-6. Epub 2002 Dec 16.

7.

Oxidative stress is increased in C. elegans models of Huntington's disease but does not contribute to polyglutamine toxicity phenotypes.

Machiela E, Dues DJ, Senchuk MM, Van Raamsdonk JM.

Neurobiol Dis. 2016 Dec;96:1-11. doi: 10.1016/j.nbd.2016.08.008. Epub 2016 Aug 18.

PMID:
27544481
8.

Reduction of polyglutamine toxicity by TDP-43, FUS and progranulin in Huntington's disease models.

Tauffenberger A, Chitramuthu BP, Bateman A, Bennett HP, Parker JA.

Hum Mol Genet. 2013 Feb 15;22(4):782-94. doi: 10.1093/hmg/dds485. Epub 2012 Nov 19.

PMID:
23172908
9.

Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae.

Klauser B, Atanasov J, Siewert LK, Hartig JS.

ACS Synth Biol. 2015 May 15;4(5):516-25. doi: 10.1021/sb500062p. Epub 2014 May 28.

PMID:
24871672
10.

Tetracycline-regulated expression of hammerhead ribozymes in vivo.

Bowden ET, Riegel AT.

Methods Mol Biol. 2004;252:179-94.

PMID:
15017049
11.

Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast.

Wittmann A, Suess B.

Mol Biosyst. 2011 Aug;7(8):2419-27. doi: 10.1039/c1mb05070b. Epub 2011 May 20.

PMID:
21603688
12.

The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans.

Zhang L, Ward JD, Cheng Z, Dernburg AF.

Development. 2015 Dec 15;142(24):4374-84. doi: 10.1242/dev.129635. Epub 2015 Nov 9.

13.

Engineering of ribozyme-based aminoglycoside switches of gene expression by in vivo genetic selection in Saccharomyces cerevisiae.

Klauser B, Rehm C, Summerer D, Hartig JS.

Methods Enzymol. 2015;550:301-20. doi: 10.1016/bs.mie.2014.10.037. Epub 2014 Dec 26.

PMID:
25605392
14.

An Efficient FLP-Based Toolkit for Spatiotemporal Control of Gene Expression in Caenorhabditis elegans.

Muñoz-Jiménez C, Ayuso C, Dobrzynska A, Torres-Mendéz A, Ruiz PC, Askjaer P.

Genetics. 2017 Aug;206(4):1763-1778. doi: 10.1534/genetics.117.201012. Epub 2017 Jun 23.

15.

Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington's disease.

Zeng Y, Guo W, Xu G, Wang Q, Feng L, Long S, Liang F, Huang Y, Lu X, Li S, Zhou J, Burgunder JM, Pang J, Pei Z.

Drug Des Devel Ther. 2016 Apr 13;10:1443-51. doi: 10.2147/DDDT.S94666. eCollection 2016.

16.

Ribozymes for specific inhibition of mRNA function in the nematode Caenorhabditis elegans.

Kawahara T, Ohshima Y.

Nucleic Acids Symp Ser. 1992;(27):45-6.

PMID:
1289822
17.

Genetic and pharmacological suppression of polyglutamine-dependent neuronal dysfunction in Caenorhabditis elegans.

Parker JA, Holbert S, Lambert E, Abderrahmane S, Néri C.

J Mol Neurosci. 2004;23(1-2):61-8. Review.

PMID:
15126693
18.

Neomycin-dependent hammerhead ribozymes for the direct control of gene expression in Saccharomyces cerevisiae.

Sack M, Stifel J, Kreft SG, Deuerling E, Hartig JS.

Methods. 2019 Jan 9. pii: S1046-2023(18)30276-7. doi: 10.1016/j.ymeth.2019.01.004. [Epub ahead of print]

PMID:
30639182
19.

Establishment of Time- and Cell-Specific RNAi in Caenorhabditis elegans.

Hamakawa M, Hirotsu T.

Methods Mol Biol. 2017;1507:67-79.

PMID:
27832533
20.

Dually inducible TetON systems for tissue-specific conditional gene expression in zebrafish.

Knopf F, Schnabel K, Haase C, Pfeifer K, Anastassiadis K, Weidinger G.

Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19933-8. doi: 10.1073/pnas.1007799107. Epub 2010 Nov 1.

Supplemental Content

Support Center