Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

ROAST: An Open-Source, Fully-Automated, Realistic Volumetric-Approach-Based Simulator For TES.

Huang Y, Datta A, Bikson M, Parra LC.

Conf Proc IEEE Eng Med Biol Soc. 2018 Jul;2018:3072-3075. doi: 10.1109/EMBC.2018.8513086.

PMID:
30441043
2.

Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline.

Huang Y, Datta A, Bikson M, Parra LC.

J Neural Eng. 2019 Jul 30;16(5):056006. doi: 10.1088/1741-2552/ab208d.

PMID:
31071686
3.

The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

Huang Y, Parra LC, Haufe S.

Neuroimage. 2016 Oct 15;140:150-62. doi: 10.1016/j.neuroimage.2015.12.019. Epub 2015 Dec 17.

4.

Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art.

Nielsen JD, Madsen KH, Puonti O, Siebner HR, Bauer C, Madsen CG, Saturnino GB, Thielscher A.

Neuroimage. 2018 Jul 1;174:587-598. doi: 10.1016/j.neuroimage.2018.03.001. Epub 2018 Mar 12.

PMID:
29518567
5.

Automated MRI segmentation for individualized modeling of current flow in the human head.

Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC.

J Neural Eng. 2013 Dec;10(6):066004. doi: 10.1088/1741-2560/10/6/066004. Epub 2013 Oct 8.

6.

A simple method for EEG guided transcranial electrical stimulation without models.

Cancelli A, Cottone C, Tecchio F, Truong DQ, Dmochowski J, Bikson M.

J Neural Eng. 2016 Jun;13(3):036022. doi: 10.1088/1741-2560/13/3/036022. Epub 2016 May 11.

PMID:
27172063
7.

SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field Modelling for Transcranial Brain Stimulation.

Saturnino GB, Puonti O, Nielsen JD, Antonenko D, Madsen KH, Thielscher A.

In: Makarov S, Horner M, Noetscher G, editors. Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018 [Internet]. Cham (CH): Springer; 2019. Chapter 1.
2019 Aug 28.

8.

An automated method for high-definition transcranial direct current stimulation modeling.

Huang Y, Su Y, Rorden C, Dmochowski J, Datta A, Parra LC.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5376-9. doi: 10.1109/EMBC.2012.6347209.

9.

Fully automated whole-head segmentation with improved smoothness and continuity, with theory reviewed.

Huang Y, Parra LC.

PLoS One. 2015 May 18;10(5):e0125477. doi: 10.1371/journal.pone.0125477. eCollection 2015. Review.

10.

Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models.

Windhoff M, Opitz A, Thielscher A.

Hum Brain Mapp. 2013 Apr;34(4):923-35. doi: 10.1002/hbm.21479. Epub 2011 Nov 23.

PMID:
22109746
11.

A pipeline for the simulation of transcranial direct current stimulation for realistic human head models using SCIRun/BioMesh3D.

Dannhauer M, Brooks D, Tucker D, MacLeod R.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5486-9. doi: 10.1109/EMBC.2012.6347236.

12.

Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold.

Lee WH, Lisanby SH, Laine AF, Peterchev AV.

IEEE Trans Biomed Eng. 2015 Sep;62(9):2095-105. doi: 10.1109/TBME.2015.2425406. Epub 2015 Apr 22.

13.

End-to-end workflow for finite element analysis of tumor treating fields in glioblastomas.

Timmons JJ, Lok E, San P, Bui K, Wong ET.

Phys Med Biol. 2017 Oct 12;62(21):8264-8282. doi: 10.1088/1361-6560/aa87f3.

PMID:
29023236
14.

Imaging of current flow in the human head during transcranial electrical therapy.

Kasinadhuni AK, Indahlastari A, Chauhan M, Schär M, Mareci TH, Sadleir RJ.

Brain Stimul. 2017 Jul - Aug;10(4):764-772. doi: 10.1016/j.brs.2017.04.125. Epub 2017 Apr 20.

15.

Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.

Seo H, Jun SC.

Brain Stimul. 2019 Mar - Apr;12(2):275-289. doi: 10.1016/j.brs.2018.11.004. Epub 2018 Nov 10.

PMID:
30449635
16.

The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.

Minjoli S, Saturnino GB, Blicher JU, Stagg CJ, Siebner HR, Antunes A, Thielscher A.

Neuroimage Clin. 2017 Apr 18;15:106-117. doi: 10.1016/j.nicl.2017.04.014. eCollection 2017.

17.

Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?

Thielscher A, Antunes A, Saturnino GB.

Conf Proc IEEE Eng Med Biol Soc. 2015;2015:222-5. doi: 10.1109/EMBC.2015.7318340.

PMID:
26736240
18.

Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES.

Truong DQ, Hüber M, Xie X, Datta A, Rahman A, Parra LC, Dmochowski JP, Bikson M.

Brain Stimul. 2014 Jul-Aug;7(4):521-4. doi: 10.1016/j.brs.2014.03.009. Epub 2014 Mar 30.

19.

COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.

Lee C, Jung YJ, Lee SJ, Im CH.

J Neurosci Methods. 2017 Feb 1;277:56-62. doi: 10.1016/j.jneumeth.2016.12.008. Epub 2016 Dec 16.

PMID:
27989592
20.

Modeling transcranial electric stimulation in mouse: a high resolution finite element study.

Bernabei JM, Lee WH, Peterchev AV.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:406-9. doi: 10.1109/EMBC.2014.6943614.

PMID:
25569982

Supplemental Content

Support Center