Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Enhanced Plasmonic Particle Trapping using Hybrid Structure of Nanoparticles and Nanorods.

Lee SY, Kim HM, Park J, Kim SK, Youn JR, Song YS.

ACS Appl Mater Interfaces. 2018 Nov 8. doi: 10.1021/acsami.8b14787. [Epub ahead of print]

PMID:
30404444
2.

Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.

Huang WH, Li SF, Xu HT, Xiang ZX, Long YB, Deng HD.

Opt Express. 2018 Mar 5;26(5):6202-6213. doi: 10.1364/OE.26.006202.

PMID:
29529812
3.

Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.

Simmons CS, Knouf EC, Tewari M, Lin LY.

J Vis Exp. 2011 Sep 27;(55). pii: 3390. doi: 10.3791/3390.

4.

Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

Jain PK, Huang X, El-Sayed IH, El-Sayed MA.

Acc Chem Res. 2008 Dec;41(12):1578-86. doi: 10.1021/ar7002804.

PMID:
18447366
5.

Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.

Harrison RK, Ben-Yakar A.

Opt Express. 2010 Oct 11;18(21):22556-71. doi: 10.1364/OE.18.022556.

PMID:
20941153
6.

Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis.

Andrén D, Shao L, Odebo Länk N, Aćimović SS, Johansson P, Käll M.

ACS Nano. 2017 Oct 24;11(10):10053-10061. doi: 10.1021/acsnano.7b04302. Epub 2017 Sep 20.

PMID:
28872830
7.

Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.

Ndukaife JC, Mishra A, Guler U, Nnanna AG, Wereley ST, Boltasseva A.

ACS Nano. 2014 Sep 23;8(9):9035-43. doi: 10.1021/nn502294w. Epub 2014 Sep 2.

PMID:
25144369
8.

Highly Reproducible Au-Decorated ZnO Nanorod Array on a Graphite Sensor for Classification of Human Aqueous Humors.

Kim W, Lee SH, Kim SH, Lee JC, Moon SW, Yu JS, Choi S.

ACS Appl Mater Interfaces. 2017 Feb 22;9(7):5891-5899. doi: 10.1021/acsami.6b16130. Epub 2017 Feb 9.

PMID:
28156092
9.

Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.

Gupta MK, König T, Near R, Nepal D, Drummy LF, Biswas S, Naik S, Vaia RA, El-Sayed MA, Tsukruk VV.

Small. 2013 Sep 9;9(17):2979-90. doi: 10.1002/smll.201300248. Epub 2013 Mar 12.

PMID:
23495078
10.

Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.

Dao TD, Han G, Arai N, Nabatame T, Wada Y, Hoang CV, Aono M, Nagao T.

Phys Chem Chem Phys. 2015 Mar 21;17(11):7395-403. doi: 10.1039/c4cp05843g.

PMID:
25700130
11.

Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements.

Lee S, Lee SH, Paulson B, Lee JC, Kim JK.

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Nov 5;204:203-208. doi: 10.1016/j.saa.2018.06.045. Epub 2018 Jun 20.

PMID:
29935391
12.

Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.

Chen H, Shao L, Ming T, Woo KC, Man YC, Wang J, Lin HQ.

ACS Nano. 2011 Aug 23;5(8):6754-63. doi: 10.1021/nn202317b. Epub 2011 Jul 29.

PMID:
21786827
13.

Gold nanorods as plasmonic nanotransducers: distance-dependent refractive index sensitivity.

Tian L, Chen E, Gandra N, Abbas A, Singamaneni S.

Langmuir. 2012 Dec 18;28(50):17435-42. doi: 10.1021/la3034534. Epub 2012 Dec 4.

PMID:
23163716
14.

A Stable Plasmonic Cu@Cu2 O/ZnO Heterojunction for Enhanced Photocatalytic Hydrogen Generation.

Lou Y, Zhang Y, Cheng L, Chen J, Zhao Y.

ChemSusChem. 2018 May 9;11(9):1505-1511. doi: 10.1002/cssc.201800249. Epub 2018 Apr 16.

PMID:
29528560
15.

Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy.

Chamanzar M, Xia Z, Yegnanarayanan S, Adibi A.

Opt Express. 2013 Dec 30;21(26):32086-98. doi: 10.1364/OE.21.032086.

PMID:
24514803
16.

Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.

Mei Z, Tang L.

Anal Chem. 2017 Jan 3;89(1):633-639. doi: 10.1021/acs.analchem.6b02797. Epub 2016 Dec 19.

PMID:
27991768
17.

Silica-coated gold nanorod arrays for nanoplasmonics devices.

Yasukuni R, Ouhenia-Ouadahi K, Boubekeur-Lecaque L, Félidj N, Maurel F, Métivier R, Nakatani K, Aubard J, Grand J.

Langmuir. 2013 Oct 15;29(41):12633-7. doi: 10.1021/la402810e. Epub 2013 Oct 4.

PMID:
24070218
18.

On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.

Padhy P, Zaman MA, Hansen P, Hesselink L.

Opt Express. 2017 Oct 16;25(21):26198-26214. doi: 10.1364/OE.25.026198.

PMID:
29041280
19.

Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.

Song H, Zhang J, Fei G, Wang J, Jiang K, Wang P, Lu Y, Iorsh I, Xu W, Jia J, Zhang L, Kivshar YS, Zhang L.

Nanotechnology. 2016 Oct 14;27(41):415708. doi: 10.1088/0957-4484/27/41/415708. Epub 2016 Sep 8.

PMID:
27607837
20.

Detection of formaldehyde in water: a shape-effect on the plasmonic sensing properties of the gold nanoparticles.

Nengsih S, Umar AA, Salleh MM, Oyama M.

Sensors (Basel). 2012;12(8):10309-25. doi: 10.3390/s120810309. Epub 2012 Jul 30.

Supplemental Content

Support Center