Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

High salt loading increases brain derived neurotrophic factor in supraoptic vasopressin neurones.

Balapattabi K, Little JT, Farmer GE, Cunningham JT.

J Neuroendocrinol. 2018 Nov;30(11):e12639. doi: 10.1111/jne.12639. Epub 2018 Oct 14.

PMID:
30129982
2.

Effects of salt-loading on supraoptic vasopressin neurones assessed by ClopHensorN chloride imaging.

Balapattabi K, Farmer GE, Knapp BA, Little JT, Bachelor M, Yuan JP, Cunningham JT.

J Neuroendocrinol. 2019 Aug;31(8):e12752. doi: 10.1111/jne.12752. Epub 2019 Jun 14.

PMID:
31136029
3.

Brain Derived Neurotrophic Factor and Supraoptic Vasopressin Neurons in Hyponatremia.

Balapattabi K, Little J, Bachelor M, Cunningham J.

Neuroendocrinology. 2019 Sep 27. doi: 10.1159/000503723. [Epub ahead of print]

4.

Brain-derived neurotrophic factor-tyrosine kinase B pathway mediates NMDA receptor NR2B subunit phosphorylation in the supraoptic nuclei following progressive dehydration.

Carreño FR, Walch JD, Dutta M, Nedungadi TP, Cunningham JT.

J Neuroendocrinol. 2011 Oct;23(10):894-905. doi: 10.1111/j.1365-2826.2011.02209.x.

5.

Brain-derived neurotrophic factor inhibits spontaneous inhibitory postsynaptic currents in the rat supraoptic nucleus.

Ohbuchi T, Yokoyama T, Saito T, Hashimoto H, Suzuki H, Otsubo H, Fujihara H, Suzuki H, Ueta Y.

Brain Res. 2009 Mar 3;1258:34-42. doi: 10.1016/j.brainres.2008.12.057. Epub 2008 Dec 31.

PMID:
19150437
7.

In vivo brain-derived neurotrophic factor release and tyrosine kinase B receptor expression in the supraoptic nucleus after osmotic stress stimulus in rats.

Arancibia S, Lecomte A, Silhol M, Aliaga E, Tapia-Arancibia L.

Neuroscience. 2007 May 11;146(2):864-73. Epub 2007 Mar 8.

PMID:
17346893
8.

Exaggerated response of arginine vasopressin-enhanced green fluorescent protein fusion gene to salt loading without disturbance of body fluid homeostasis in rats.

Fujio T, Fujihara H, Shibata M, Yamada S, Onaka T, Tanaka K, Morita H, Dayanithi G, Kawata M, Murphy D, Ueta Y.

J Neuroendocrinol. 2006 Oct;18(10):776-85.

PMID:
16965296
9.

Expression of the arginine vasopressin gene in response to salt loading in oxytocin gene knockout mice.

Ozaki Y, Nomura M, Saito J, Luedke CE, Muglia LJ, Matsumoto T, Ogawa S, Ueta Y, Pfaff DW.

J Neuroendocrinol. 2004 Jan;16(1):39-44.

PMID:
14962074
11.

Increased expression of magnocellular vasopressin mRNA in rats with deoxycorticosterone-acetate induced salt appetite.

Grillo CA, Saravia F, Ferrini M, Piroli G, Roig P, García SI, de Kloet ER, De Nicola AF.

Neuroendocrinology. 1998 Aug;68(2):105-15.

PMID:
9705577
12.

GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension.

Kim YB, Kim YS, Kim WB, Shen FY, Lee SW, Chung HJ, Kim JS, Han HC, Colwell CS, Kim YI.

Circ Res. 2013 Dec 6;113(12):1296-307. doi: 10.1161/CIRCRESAHA.113.301814. Epub 2013 Oct 8.

PMID:
24103391
13.

The mutual regulation of arginine-vasopressin and PTHrP secretion in dissociated supraoptic neurons.

Yamamoto S, Morimoto I, Tanaka Y, Yanagihara N, Eto S.

Endocrinology. 2002 Apr;143(4):1521-9.

PMID:
11897711
14.

Region-specific changes in transient receptor potential vanilloid channel expression in the vasopressin magnocellular system in hepatic cirrhosis-induced hyponatraemia.

Nedungadi TP, Carreño FR, Walch JD, Bathina CS, Cunningham JT.

J Neuroendocrinol. 2012 Apr;24(4):642-52. doi: 10.1111/j.1365-2826.2011.02273.x.

15.

Differential kinetics of oxytocin and vasopressin heteronuclear RNA expression in the rat supraoptic nucleus in response to chronic salt loading in vivo.

Yue C, Mutsuga N, Sugimura Y, Verbalis J, Gainer H.

J Neuroendocrinol. 2008 Feb;20(2):227-32. Epub 2007 Dec 14.

PMID:
18088359
16.

Electrophysiological effects of kainic acid on vasopressin-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 neurones isolated from the supraoptic nucleus in transgenic rats.

Ohkubo J, Ohbuchi T, Yoshimura M, Maruyama T, Ishikura T, Matsuura T, Suzuki H, Ueta Y.

J Neuroendocrinol. 2014 Jan;26(1):43-51. doi: 10.1111/jne.12128.

PMID:
24341559
17.

Transgenic approach to express the channelrhodopsin 2 gene in arginine vasopressin neurons of rats.

Ishii M, Hashimoto H, Ohkubo JI, Ohbuchi T, Saito T, Maruyama T, Yoshimura M, Yamamoto Y, Kusuhara K, Ueta Y.

Neurosci Lett. 2016 Sep 6;630:194-198. doi: 10.1016/j.neulet.2016.08.001. Epub 2016 Aug 1.

PMID:
27493075
18.
19.

Perinatal exposure to organohalogen pollutants decreases vasopressin content and its mRNA expression in magnocellular neuroendocrine cells activated by osmotic stress in adult rats.

Mucio-Ramírez S, Sánchez-Islas E, Sánchez-Jaramillo E, Currás-Collazo M, Juárez-González VR, Álvarez-González MY, Orser LE, Hou B, Pellicer F, Kodavanti PRS, León-Olea M.

Toxicol Appl Pharmacol. 2017 Aug 15;329:173-189. doi: 10.1016/j.taap.2017.05.039. Epub 2017 Jun 1.

20.

Oxytocin, but not arginine vasopressin is involving in the antinociceptive role of hypothalamic supraoptic nucleus.

Yang J, Liang JY, Zhang XY, Qiu PY, Pan YJ, Li P, Zhang J, Hao F, Wang DX, Yan FL.

Peptides. 2011 May;32(5):1042-6. doi: 10.1016/j.peptides.2011.02.001. Epub 2011 Feb 16.

PMID:
21310203

Supplemental Content

Support Center