Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications.

Green BJ, Worthington KS, Thompson JR, Bunn SJ, Rethwisch M, Kaalberg EE, Jiao C, Wiley LA, Mullins RF, Stone EM, Sohn EH, Tucker BA, Guymon CA.

Biomacromolecules. 2018 Sep 10;19(9):3682-3692. doi: 10.1021/acs.biomac.8b00784. Epub 2018 Aug 9.

PMID:
30044915
2.

In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).

Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, Dhert WJ, Hennink WE.

Biomaterials. 2012 Jun;33(17):4309-18. doi: 10.1016/j.biomaterials.2012.03.002. Epub 2012 Mar 20.

PMID:
22436798
3.

Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.

Stefani I, Cooper-White JJ.

Acta Biomater. 2016 May;36:231-40. doi: 10.1016/j.actbio.2016.03.013. Epub 2016 Mar 8.

PMID:
26969522
4.

Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.

Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG.

J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.

5.

Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells.

V S S, P V M.

Colloids Surf B Biointerfaces. 2018 Mar 1;163:107-118. doi: 10.1016/j.colsurfb.2017.12.039. Epub 2017 Dec 21.

PMID:
29287231
6.

Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds.

Güney A, Malda J, Dhert WJA, Grijpma DW.

Int J Artif Organs. 2017 May 9;40(4):176-184. doi: 10.5301/ijao.5000543. Epub 2017 Feb 1.

PMID:
28165584
7.

New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K.

Mater Sci Eng C Mater Biol Appl. 2015 Nov 1;56:9-21. doi: 10.1016/j.msec.2015.06.020. Epub 2015 Jun 11.

PMID:
26249560
8.

Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.

Pal J, Kankariya N, Sanwaria S, Nandan B, Srivastava RK.

Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4213-20. doi: 10.1016/j.msec.2013.06.011. Epub 2013 Jun 18.

PMID:
23910335
9.

Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink.

Jing L, Wang X, Liu H, Lu Y, Bian J, Sun J, Huang D.

ACS Appl Mater Interfaces. 2018 Jun 6;10(22):18551-18559. doi: 10.1021/acsami.8b04344. Epub 2018 May 25.

PMID:
29763548
10.

Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.

Atzet S, Curtin S, Trinh P, Bryant S, Ratner B.

Biomacromolecules. 2008 Dec;9(12):3370-7. doi: 10.1021/bm800686h.

11.

Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation.

Cheng CC, Lee DJ, Chen JK.

Acta Biomater. 2017 Mar 1;50:476-483. doi: 10.1016/j.actbio.2016.12.031. Epub 2016 Dec 18.

PMID:
28003144
12.

3D printing of photocurable poly(glycerol sebacate) elastomers.

Yeh YC, Highley CB, Ouyang L, Burdick JA.

Biofabrication. 2016 Oct 7;8(4):045004.

PMID:
27716633
13.

In vivo implantation of 2,2'-bis(oxazoline)-linked poly-epsilon-caprolactone: proof for enzyme sensitive surface erosion and biocompatibility.

Pulkkinen M, Malin M, Böhm J, Tarvainen T, Wirth T, Seppälä J, Järvinen K.

Eur J Pharm Sci. 2009 Feb 15;36(2-3):310-9. doi: 10.1016/j.ejps.2008.10.011. Epub 2008 Oct 31. Erratum in: Eur J Pharm Sci. 2009 May 12;37(2):183.

PMID:
19022379
14.

Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography.

Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV.

Acta Biomater. 2011 Nov;7(11):3850-6. doi: 10.1016/j.actbio.2011.06.039. Epub 2011 Jun 27.

PMID:
21763796
15.

Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications.

Bhullar SK, Rana D, Lekesiz H, Bedeloglu AC, Ko J, Cho Y, Aytac Z, Uyar T, Jun M, Ramalingam M.

Mater Sci Eng C Mater Biol Appl. 2017 Dec 1;81:334-340. doi: 10.1016/j.msec.2017.08.022. Epub 2017 Aug 4.

PMID:
28887981
16.

Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.

Li WJ, Cooper JA Jr, Mauck RL, Tuan RS.

Acta Biomater. 2006 Jul;2(4):377-85. Epub 2006 May 6.

PMID:
16765878
17.

Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix<sup/>.

Nyberg E, Rindone A, Dorafshar A, Grayson WL.

Tissue Eng Part A. 2017 Jun;23(11-12):503-514. doi: 10.1089/ten.TEA.2016.0418. Epub 2017 Feb 7.

PMID:
28027692
19.

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.

Int J Nanomedicine. 2013;8:4197-213. doi: 10.2147/IJN.S50685. Epub 2013 Nov 1.

20.

PCL and PCL-based materials in biomedical applications.

Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N.

J Biomater Sci Polym Ed. 2018 May - Jun;29(7-9):863-893. doi: 10.1080/09205063.2017.1394711. Epub 2017 Nov 2.

PMID:
29053081

Supplemental Content

Support Center