Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications.

Green BJ, Worthington KS, Thompson JR, Bunn SJ, Rethwisch M, Kaalberg EE, Jiao C, Wiley LA, Mullins RF, Stone EM, Sohn EH, Tucker BA, Guymon CA.

Biomacromolecules. 2018 Sep 10;19(9):3682-3692. doi: 10.1021/acs.biomac.8b00784. Epub 2018 Aug 9.

PMID:
30044915
2.

Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.

Atzet S, Curtin S, Trinh P, Bryant S, Ratner B.

Biomacromolecules. 2008 Dec;9(12):3370-7. doi: 10.1021/bm800686h.

3.

Study of Physical and Degradation Properties of 3D-Printed Biodegradable, Photocurable Copolymers, PGSA-co-PEGDA and PGSA-co-PCLDA.

Chen JY, Hwang JV, Ao-Ieong WS, Lin YC, Hsieh YK, Cheng YL, Wang J.

Polymers (Basel). 2018 Nov 13;10(11). pii: E1263. doi: 10.3390/polym10111263.

4.

Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers.

Yang X, Cui C, Tong Z, Sabanayagam CR, Jia X.

Acta Biomater. 2013 Sep;9(9):8232-44. doi: 10.1016/j.actbio.2013.06.005. Epub 2013 Jun 14.

5.

In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).

Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, Dhert WJ, Hennink WE.

Biomaterials. 2012 Jun;33(17):4309-18. doi: 10.1016/j.biomaterials.2012.03.002. Epub 2012 Mar 20.

PMID:
22436798
6.

Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells.

V S S, P V M.

Colloids Surf B Biointerfaces. 2018 Mar 1;163:107-118. doi: 10.1016/j.colsurfb.2017.12.039. Epub 2017 Dec 21.

PMID:
29287231
7.

Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.

Pal J, Kankariya N, Sanwaria S, Nandan B, Srivastava RK.

Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4213-20. doi: 10.1016/j.msec.2013.06.011. Epub 2013 Jun 18.

PMID:
23910335
8.

Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.

Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG.

J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.

9.

New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K.

Mater Sci Eng C Mater Biol Appl. 2015 Nov 1;56:9-21. doi: 10.1016/j.msec.2015.06.020. Epub 2015 Jun 11.

PMID:
26249560
10.

Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation.

Cheng CC, Lee DJ, Chen JK.

Acta Biomater. 2017 Mar 1;50:476-483. doi: 10.1016/j.actbio.2016.12.031. Epub 2016 Dec 18.

PMID:
28003144
11.

Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer.

Yan J, Li J, Runge MB, Dadsetan M, Chen Q, Lu L, Yaszemski MJ.

J Biomater Sci Polym Ed. 2011;22(4-6):489-504. doi: 10.1163/092050610X487765. Epub 2010 Jun 21.

12.

PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.

Woodard LN, Page VM, Kmetz KT, Grunlan MA.

Macromol Rapid Commun. 2016 Dec;37(23):1972-1977. doi: 10.1002/marc.201600414. Epub 2016 Oct 24.

PMID:
27774684
13.
14.

Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.

Stefani I, Cooper-White JJ.

Acta Biomater. 2016 May;36:231-40. doi: 10.1016/j.actbio.2016.03.013. Epub 2016 Mar 8.

PMID:
26969522
15.

Synthesis and characterization of a photo-cross-linked biodegradable elastomer.

Amsden BG, Misra G, Gu F, Younes HM.

Biomacromolecules. 2004 Nov-Dec;5(6):2479-86.

PMID:
15530066
16.

Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography.

Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV.

Acta Biomater. 2011 Nov;7(11):3850-6. doi: 10.1016/j.actbio.2011.06.039. Epub 2011 Jun 27.

PMID:
21763796
17.

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.

Int J Nanomedicine. 2013;8:4197-213. doi: 10.2147/IJN.S50685. Epub 2013 Nov 1.

18.

Synthesis, Characterization, and Visible Light Curing Capacity of Polycaprolactone Acrylate.

Tzeng JJ, Hsiao YT, Wu YC, Chen H, Lee SY, Lin YM.

Biomed Res Int. 2018 May 8;2018:8719624. doi: 10.1155/2018/8719624. eCollection 2018.

20.

Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.

Cui Z, Nelson B, Peng Y, Li K, Pilla S, Li WJ, Turng LS, Shen C.

Mater Sci Eng C Mater Biol Appl. 2012 Aug 1;32(6):1674-81. doi: 10.1016/j.msec.2012.04.064. Epub 2012 Apr 29.

PMID:
24364976

Supplemental Content

Support Center