Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Arid1a restrains Kras-dependent changes in acinar cell identity.

Livshits G, Alonso-Curbelo D, Morris JP 4th, Koche R, Saborowski M, Wilkinson JE, Lowe SW.

Elife. 2018 Jul 17;7. pii: e35216. doi: 10.7554/eLife.35216.

2.

ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice.

Kimura Y, Fukuda A, Ogawa S, Maruno T, Takada Y, Tsuda M, Hiramatsu Y, Araki O, Nagao M, Yoshikawa T, Ikuta K, Yoshioka T, Wang Z, Akiyama H, Wright CV, Takaori K, Uemoto S, Chiba T, Seno H.

Gastroenterology. 2018 Jul;155(1):194-209.e2. doi: 10.1053/j.gastro.2018.03.039. Epub 2018 Mar 29.

PMID:
29604291
3.

ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas.

Wang W, Friedland SC, Guo B, O'Dell MR, Alexander WB, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, Myers JR, Ashton JM, Dunne RF, Steiner LA, Hezel AF.

Gut. 2018 Sep 18. pii: gutjnl-2017-315541. doi: 10.1136/gutjnl-2017-315541. [Epub ahead of print]

PMID:
30228219
4.

ARID1A suppresses malignant transformation of human pancreatic cells via mediating senescence-associated miR-503/CDKN2A regulatory axis.

Li ZY, Zhu SS, Chen XJ, Zhu J, Chen Q, Zhang YQ, Zhang CL, Guo TT, Zhang LM.

Biochem Biophys Res Commun. 2017 Nov 18;493(2):1018-1025. doi: 10.1016/j.bbrc.2017.09.099. Epub 2017 Sep 20.

PMID:
28942143
5.

Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

Hermann PC, Sancho P, Cañamero M, Martinelli P, Madriles F, Michl P, Gress T, de Pascual R, Gandia L, Guerra C, Barbacid M, Wagner M, Vieira CR, Aicher A, Real FX, Sainz B Jr, Heeschen C.

Gastroenterology. 2014 Nov;147(5):1119-33.e4. doi: 10.1053/j.gastro.2014.08.002. Epub 2014 Aug 12.

PMID:
25127677
6.

Maintenance of acinar cell organization is critical to preventing Kras-induced acinar-ductal metaplasia.

Shi G, DiRenzo D, Qu C, Barney D, Miley D, Konieczny SF.

Oncogene. 2013 Apr 11;32(15):1950-8. doi: 10.1038/onc.2012.210. Epub 2012 Jun 4.

7.

The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice.

Martinelli P, Madriles F, Cañamero M, Pau EC, Pozo ND, Guerra C, Real FX.

Gut. 2016 Mar;65(3):476-86. doi: 10.1136/gutjnl-2014-308042. Epub 2015 Jan 16.

PMID:
25596178
8.

Molecular mechanism of intraductal papillary mucinous neoplasm and intraductal papillary mucinous neoplasm-derived pancreatic ductal adenocarcinoma.

Fukuda A.

J Hepatobiliary Pancreat Sci. 2015 Jul;22(7):519-23. doi: 10.1002/jhbp.246. Epub 2015 Apr 21. Review.

9.

PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice.

Wu CY, Carpenter ES, Takeuchi KK, Halbrook CJ, Peverley LV, Bien H, Hall JC, DelGiorno KE, Pal D, Song Y, Shi C, Lin RZ, Crawford HC.

Gastroenterology. 2014 Dec;147(6):1405-16.e7. doi: 10.1053/j.gastro.2014.08.032. Epub 2014 Aug 27.

10.

NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.

Chen NM, Singh G, Koenig A, Liou GY, Storz P, Zhang JS, Regul L, Nagarajan S, Kühnemuth B, Johnsen SA, Hebrok M, Siveke J, Billadeau DD, Ellenrieder V, Hessmann E.

Gastroenterology. 2015 May;148(5):1024-1034.e9. doi: 10.1053/j.gastro.2015.01.033. Epub 2015 Jan 23.

11.

Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation.

von Figura G, Morris JP 4th, Wright CV, Hebrok M.

Gut. 2014 Apr;63(4):656-64. doi: 10.1136/gutjnl-2012-304287. Epub 2013 May 3.

12.

Context-Dependent Epigenetic Regulation of Nuclear Factor of Activated T Cells 1 in Pancreatic Plasticity.

Chen NM, Neesse A, Dyck ML, Steuber B, Koenig AO, Lubeseder-Martellato C, Winter T, Forster T, Bohnenberger H, Kitz J, Reuter-Jessen K, Griesmann H, Gaedcke J, Grade M, Zhang JS, Tsai WC, Siveke J, Schildhaus HU, Ströbel P, Johnsen SA, Ellenrieder V, Hessmann E.

Gastroenterology. 2017 May;152(6):1507-1520.e15. doi: 10.1053/j.gastro.2017.01.043. Epub 2017 Feb 8.

13.

Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer.

Zhang S, Chung WC, Xu K.

Oncogene. 2016 May 12;35(19):2485-95. doi: 10.1038/onc.2015.306. Epub 2015 Aug 17.

PMID:
26279302
14.

YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK-STAT3 Signaling.

Gruber R, Panayiotou R, Nye E, Spencer-Dene B, Stamp G, Behrens A.

Gastroenterology. 2016 Sep;151(3):526-39. doi: 10.1053/j.gastro.2016.05.006. Epub 2016 May 20.

15.

Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.

He P, Yang JW, Yang VW, Bialkowska AB.

Gastroenterology. 2018 Apr;154(5):1494-1508.e13. doi: 10.1053/j.gastro.2017.12.005. Epub 2017 Dec 15.

16.

SWI/SNF component ARID1A restrains pancreatic neoplasia formation.

Wang SC, Nassour I, Xiao S, Zhang S, Luo X, Lee J, Li L, Sun X, Nguyen LH, Chuang JC, Peng L, Daigle S, Shen J, Zhu H.

Gut. 2018 Oct 12. pii: gutjnl-2017-315490. doi: 10.1136/gutjnl-2017-315490. [Epub ahead of print]

17.

Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice.

Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, Feldmann G, Stoffers DA, Konieczny SF, Leach SD, Maitra A.

Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18913-8. doi: 10.1073/pnas.0810097105. Epub 2008 Nov 21.

18.

A genetically engineered mouse model developing rapid progressive pancreatic ductal adenocarcinoma.

Yamaguchi T, Ikehara S, Nakanishi H, Ikehara Y.

J Pathol. 2014 Oct;234(2):228-38. doi: 10.1002/path.4402. Epub 2014 Aug 4.

PMID:
25042889
19.

Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions.

Lubeseder-Martellato C, Alexandrow K, Hidalgo-Sastre A, Heid I, Boos SL, Briel T, Schmid RM, Siveke JT.

EBioMedicine. 2017 Feb;15:90-99. doi: 10.1016/j.ebiom.2016.12.013. Epub 2016 Dec 24.

20.

The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma.

von Figura G, Fukuda A, Roy N, Liku ME, Morris Iv JP, Kim GE, Russ HA, Firpo MA, Mulvihill SJ, Dawson DW, Ferrer J, Mueller WF, Busch A, Hertel KJ, Hebrok M.

Nat Cell Biol. 2014 Mar;16(3):255-67. doi: 10.1038/ncb2916. Epub 2014 Feb 23.

Supplemental Content

Support Center