Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Hypoxia compounds exercise-induced free radical formation in humans; partitioning contributions from the cerebral and femoral circulation.

Bailey DM, Rasmussen P, Evans KA, Bohm AM, Zaar M, Nielsen HB, Brassard P, Nordsborg NB, Homann PH, Raven PB, McEneny J, Young IS, McCord JM, Secher NH.

Free Radic Biol Med. 2018 Aug 20;124:104-113. doi: 10.1016/j.freeradbiomed.2018.05.090. Epub 2018 May 31.

PMID:
29859345
2.

Nitrite and S-Nitrosohemoglobin Exchange Across the Human Cerebral and Femoral Circulation: Relationship to Basal and Exercise Blood Flow Responses to Hypoxia.

Bailey DM, Rasmussen P, Overgaard M, Evans KA, Bohm AM, Seifert T, Brassard P, Zaar M, Nielsen HB, Raven PB, Secher NH.

Circulation. 2017 Jan 10;135(2):166-176. doi: 10.1161/CIRCULATIONAHA.116.024226. Epub 2016 Nov 15.

PMID:
27881556
3.

Manipulation of systemic oxygen flux by acute exercise and normobaric hypoxia: implications for reactive oxygen species generation.

Davison GW, Morgan RM, Hiscock N, Garcia JM, Grace F, Boisseau N, Davies B, Castell L, McEneny J, Young IS, Hullin D, Ashton T, Bailey DM.

Clin Sci (Lond). 2006 Jan;110(1):133-41.

PMID:
16197367
4.

Cerebral formation of free radicals during hypoxia does not cause structural damage and is associated with a reduction in mitochondrial PO2; evidence of O2-sensing in humans?

Bailey DM, Taudorf S, Berg RM, Lundby C, Pedersen BK, Rasmussen P, Møller K.

J Cereb Blood Flow Metab. 2011 Apr;31(4):1020-6. doi: 10.1038/jcbfm.2011.2. Epub 2011 Feb 9.

5.

Regulation of free radical outflow from an isolated muscle bed in exercising humans.

Bailey DM, Young IS, McEneny J, Lawrenson L, Kim J, Barden J, Richardson RS.

Am J Physiol Heart Circ Physiol. 2004 Oct;287(4):H1689-99. Epub 2004 May 20.

6.

Sedentary aging increases resting and exercise-induced intramuscular free radical formation.

Bailey DM, McEneny J, Mathieu-Costello O, Henry RR, James PE, McCord JM, Pietri S, Young IS, Richardson RS.

J Appl Physiol (1985). 2010 Aug;109(2):449-56. doi: 10.1152/japplphysiol.00354.2010. Epub 2010 May 27.

7.

Molecular detection of exercise-induced free radicals following ascorbate prophylaxis in type 1 diabetes mellitus: a randomised controlled trial.

Davison GW, Ashton T, George L, Young IS, McEneny J, Davies B, Jackson SK, Peters JR, Bailey DM.

Diabetologia. 2008 Nov;51(11):2049-59. doi: 10.1007/s00125-008-1101-1. Epub 2008 Sep 4.

PMID:
18769906
8.

Acute hypoxia and exercise-induced blood oxidative stress.

McGinnis G, Kliszczewiscz B, Barberio M, Ballmann C, Peters B, Slivka D, Dumke C, Cuddy J, Hailes W, Ruby B, Quindry J.

Int J Sport Nutr Exerc Metab. 2014 Dec;24(6):684-93. doi: 10.1123/ijsnem.2013-0188. Epub 2014 Mar 25.

PMID:
24667140
9.
11.

Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise.

Peltonen JE, Paterson DH, Shoemaker JK, Delorey DS, Dumanoir GR, Petrella RJ, Kowalchuk JM.

Respir Physiol Neurobiol. 2009 Oct 31;169(1):24-35. doi: 10.1016/j.resp.2009.08.013. Epub 2009 Sep 1.

PMID:
19729079
12.

Critical difference applied to exercise-induced oxidative stress: the dilemma of distinguishing biological from statistical change.

Davison GW, Ashton T, McEneny J, Young IS, Davies B, Bailey DM.

J Physiol Biochem. 2012 Sep;68(3):377-84.

PMID:
22298153
13.

Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?

Bailey DM, Taudorf S, Berg RM, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Möller K.

Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1283-92. doi: 10.1152/ajpregu.00366.2009. Epub 2009 Sep 2.

14.

Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity.

Woodside JD, Gutowski M, Fall L, James PE, McEneny J, Young IS, Ogoh S, Bailey DM.

Exp Physiol. 2014 Dec 1;99(12):1648-62. doi: 10.1113/expphysiol.2014.081265. Epub 2014 Oct 23.

15.

Exercise, free radicals, and lipid peroxidation in type 1 diabetes mellitus.

Davison GW, George L, Jackson SK, Young IS, Davies B, Bailey DM, Peters JR, Ashton T.

Free Radic Biol Med. 2002 Dec 1;33(11):1543-51.

PMID:
12446212
16.

Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins.

Crecelius AR, Kirby BS, Voyles WF, Dinenno FA.

J Physiol. 2011 Jul 15;589(Pt 14):3671-83. doi: 10.1113/jphysiol.2011.209486. Epub 2011 May 30.

17.

Thermodilution-determined Internal Jugular Venous Flow.

Rasmussen P, Widmer M, Hilty MP, Hug M, Sørensen H, Ogoh S, Sato K, Secher NH, Maggiorini M, Lundby C.

Med Sci Sports Exerc. 2017 Apr;49(4):661-668. doi: 10.1249/MSS.0000000000001143.

18.

Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance.

Pialoux V, Mounier R, Ponsot E, Rock E, Mazur A, Dufour S, Richard R, Richalet JP, Coudert J, Fellmann N.

Eur J Clin Nutr. 2006 Dec;60(12):1345-54. Epub 2006 Jun 21.

PMID:
16788711
19.

Redox-regulation of haemostasis in hypoxic exercising humans: a randomised double-blind placebo-controlled antioxidant study.

Fall L, Brugniaux JV, Davis D, Marley CJ, Davies B, New KJ, McEneny J, Young IS, Bailey DM.

J Physiol. 2018 Oct;596(20):4879-4891. doi: 10.1113/JP276414. Epub 2018 Aug 29.

Supplemental Content

Support Center