Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation.

Wunder S, Hunold A, Fiedler P, Schlegelmilch F, Schellhorn K, Haueisen J.

Sci Rep. 2018 May 8;8(1):7259. doi: 10.1038/s41598-018-25562-x.

2.

Novel Multipin Electrode Cap System for Dry Electroencephalography.

Fiedler P, Pedrosa P, Griebel S, Fonseca C, Vaz F, Supriyanto E, Zanow F, Haueisen J.

Brain Topogr. 2015 Sep;28(5):647-656. doi: 10.1007/s10548-015-0435-5. Epub 2015 May 22.

PMID:
25998854
3.

Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates.

Opitz A, Falchier A, Yan CG, Yeagle EM, Linn GS, Megevand P, Thielscher A, Deborah A R, Milham MP, Mehta AD, Schroeder CE.

Sci Rep. 2016 Aug 18;6:31236. doi: 10.1038/srep31236.

4.

A simple method for EEG guided transcranial electrical stimulation without models.

Cancelli A, Cottone C, Tecchio F, Truong DQ, Dmochowski J, Bikson M.

J Neural Eng. 2016 Jun;13(3):036022. doi: 10.1088/1741-2560/13/3/036022. Epub 2016 May 11.

PMID:
27172063
5.

TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions.

Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE.

Neurosci Biobehav Rev. 2016 May;64:175-84. doi: 10.1016/j.neubiorev.2016.03.006. Epub 2016 Mar 6. Review.

PMID:
26959337
6.

Personalizing the Electrode to Neuromodulate an Extended Cortical Region.

Cancelli A, Cottone C, Di Giorgio M, Carducci F, Tecchio F.

Brain Stimul. 2015 May-Jun;8(3):555-60. doi: 10.1016/j.brs.2015.01.398. Epub 2015 Jan 14.

PMID:
25680321
7.

Advanced Boundary Electrode Modeling for tES and Parallel tES/EEG.

Pursiainen S, Agsten B, Wagner S, Wolters CH.

IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):37-44. doi: 10.1109/TNSRE.2017.2748930. Epub 2017 Sep 28.

PMID:
28961118
8.

Analyzing EEG and MEG signals recorded during tES, a reply.

Noury N, Siegel M.

Neuroimage. 2018 Feb 15;167:53-61. doi: 10.1016/j.neuroimage.2017.11.023. Epub 2017 Nov 14.

PMID:
29155079
9.

Movement Along the Spine Induced by Transcranial Electrical Stimulation Related Electrode Positioning.

Hoebink EA, Journée HL, de Kleuver M, Berends H, Racz I, van Hal C.

Spine (Phila Pa 1976). 2016 Jul 15;41(14):1128-32. doi: 10.1097/BRS.0000000000001495.

PMID:
26890949
10.

A Wearable EEG-HEG-HRV Multimodal System With Simultaneous Monitoring of tES for Mental Health Management.

Ha U, Lee Y, Kim H, Roh T, Bae J, Kim C, Yoo HJ.

IEEE Trans Biomed Circuits Syst. 2015 Dec;9(6):758-66. doi: 10.1109/TBCAS.2015.2504959. Epub 2016 Jan 6.

PMID:
26742142
11.

Chronic Transcranial Electrical Stimulation and Intracortical Recording in Rats.

Kozák G, Földi T, Berényi A.

J Vis Exp. 2018 May 11;(135). doi: 10.3791/56669.

PMID:
29806839
12.

Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

Hill NJ, Gupta D, Brunner P, Gunduz A, Adamo MA, Ritaccio A, Schalk G.

J Vis Exp. 2012 Jun 26;(64). pii: 3993. doi: 10.3791/3993.

13.

Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

Dmochowski JP, Koessler L, Norcia AM, Bikson M, Parra LC.

Neuroimage. 2017 Aug 15;157:69-80. doi: 10.1016/j.neuroimage.2017.05.059. Epub 2017 May 31.

14.

Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings.

Noury N, Siegel M.

Neuroimage. 2017 Sep;158:406-416. doi: 10.1016/j.neuroimage.2017.07.010. Epub 2017 Jul 12.

PMID:
28711738
15.

Methods to monitor accurate and consistent electrode placements in conventional transcranial electrical stimulation.

Indahlastari A, Albizu A, Nissim NR, Traeger KR, O'Shea A, Woods AJ.

Brain Stimul. 2019 Mar - Apr;12(2):267-274. doi: 10.1016/j.brs.2018.10.016. Epub 2018 Oct 28.

PMID:
30420198
16.

Assessing a novel polymer-wick based electrode for EEG neurophysiological research.

Pasion R, Paiva TO, Pedrosa P, Gaspar H, Vasconcelos B, Martins AC, Amaral MH, Nóbrega JM, Páscoa R, Fonseca C, Barbosa F.

J Neurosci Methods. 2016 Jul 15;267:126-31. doi: 10.1016/j.jneumeth.2016.04.009. Epub 2016 Apr 14.

PMID:
27091368
17.

The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

Huang Y, Parra LC, Haufe S.

Neuroimage. 2016 Oct 15;140:150-62. doi: 10.1016/j.neuroimage.2015.12.019. Epub 2015 Dec 17.

18.

Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

Shigematsu H, Kawaguchi M, Hayashi H, Takatani T, Iwata E, Tanaka M, Okuda A, Morimoto Y, Masuda K, Tanaka Y, Tanaka Y.

Spine J. 2017 Oct;17(10):1472-1479. doi: 10.1016/j.spinee.2017.05.004. Epub 2017 May 5.

PMID:
28483707
19.

A technical guide to tDCS, and related non-invasive brain stimulation tools.

Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, Knotkova H, Liebetanz D, Miniussi C, Miranda PC, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche MA.

Clin Neurophysiol. 2016 Feb;127(2):1031-1048. doi: 10.1016/j.clinph.2015.11.012. Epub 2015 Nov 22. Review.

20.

A high-speed brain-computer interface (BCI) using dry EEG electrodes.

Spüler M.

PLoS One. 2017 Feb 22;12(2):e0172400. doi: 10.1371/journal.pone.0172400. eCollection 2017.

Supplemental Content

Support Center