Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Interleukin-1β Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis.

Lemos DR, McMurdo M, Karaca G, Wilflingseder J, Leaf IA, Gupta N, Miyoshi T, Susa K, Johnson BG, Soliman K, Wang G, Morizane R, Bonventre JV, Duffield JS.

J Am Soc Nephrol. 2018 Jun;29(6):1690-1705. doi: 10.1681/ASN.2017121283. Epub 2018 May 8.

2.

[Identification of Biomarkers for Tubular Injury and Interstitial Fibrosis in Chronic Kidney Disease].

Nakagawa S.

Yakugaku Zasshi. 2017;137(11):1355-1360. doi: 10.1248/yakushi.17-00150. Review. Japanese.

3.

c-Myc promotes renal fibrosis by inducing integrin αv-mediated transforming growth factor-β signaling.

Shen Y, Miao N, Wang B, Xu J, Gan X, Xu D, Zhou L, Xue H, Zhang W, Yang L, Lu L.

Kidney Int. 2017 Oct;92(4):888-899. doi: 10.1016/j.kint.2017.03.006. Epub 2017 May 6.

PMID:
28483378
4.

Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes.

Perera PM, Wypasek E, Madhavan S, Rath-Deschner B, Liu J, Nam J, Rath B, Huang Y, Deschner J, Piesco N, Wu C, Agarwal S.

Arthritis Res Ther. 2010;12(3):R106. doi: 10.1186/ar3039. Epub 2010 May 28.

5.

Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

Ding H, Jiang L, Xu J, Bai F, Zhou Y, Yuan Q, Luo J, Zen K, Yang J.

Am J Physiol Renal Physiol. 2017 Sep 1;313(3):F561-F575. doi: 10.1152/ajprenal.00036.2017. Epub 2017 Feb 22.

6.

Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury.

Leaf IA, Nakagawa S, Johnson BG, Cha JJ, Mittelsteadt K, Guckian KM, Gomez IG, Altemeier WA, Duffield JS.

J Clin Invest. 2017 Jan 3;127(1):321-334. doi: 10.1172/JCI87532. Epub 2016 Nov 21.

7.

Blockade of cysteine-rich protein 61 attenuates renal inflammation and fibrosis after ischemic kidney injury.

Lai CF, Lin SL, Chiang WC, Chen YM, Wu VC, Young GH, Ko WJ, Kuo ML, Tsai TJ, Wu KD.

Am J Physiol Renal Physiol. 2014 Sep 1;307(5):F581-92. doi: 10.1152/ajprenal.00670.2013. Epub 2014 Jun 11.

8.

ErbB4 deletion accelerates renal fibrosis following renal injury.

Zeng F, Miyazawa T, Kloepfer LA, Harris RC.

Am J Physiol Renal Physiol. 2018 May 1;314(5):F773-F787. doi: 10.1152/ajprenal.00260.2017. Epub 2017 Jul 19.

9.

Renal tubule injury: a driving force toward chronic kidney disease.

Liu BC, Tang TT, Lv LL, Lan HY.

Kidney Int. 2018 Mar;93(3):568-579. doi: 10.1016/j.kint.2017.09.033. Epub 2018 Jan 17. Review.

PMID:
29361307
10.

Lipopolysaccharide Induces Chronic Kidney Injury and Fibrosis through Activation of mTOR Signaling in Macrophages.

Chen H, Zhu J, Liu Y, Dong Z, Liu H, Liu Y, Zhou X, Liu F, Chen G.

Am J Nephrol. 2015;42(4):305-17. doi: 10.1159/000441506. Epub 2015 Oct 31.

PMID:
26517816
11.

Effects of erythropoietin receptor activity on angiogenesis, tubular injury, and fibrosis in acute kidney injury: a "U-shaped" relationship.

Shi M, Flores B, Li P, Gillings N, McMillan KL, Ye J, Huang LJ, Sidhu SS, Zhong YP, Grompe MT, Streeter PR, Moe OW, Hu MC.

Am J Physiol Renal Physiol. 2018 Apr 1;314(4):F501-F516. doi: 10.1152/ajprenal.00306.2017. Epub 2017 Nov 29.

12.

Role of protein kinase C and oxidative stress in interleukin-1beta-induced human proximal tubule cell injury and fibrogenesis.

Vesey DA, Cheung C, Endre Z, Gobé G, Johnson DW.

Nephrology (Carlton). 2005 Feb;10(1):73-80.

PMID:
15705185
13.

Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism.

Mehrotra P, Patel JB, Ivancic CM, Collett JA, Basile DP.

Kidney Int. 2015 Oct;88(4):776-84. doi: 10.1038/ki.2015.200. Epub 2015 Jul 22.

14.

Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction.

Ito M, Yurube T, Kakutani K, Maeno K, Takada T, Terashima Y, Kakiuchi Y, Takeoka Y, Miyazaki S, Kuroda R, Nishida K.

Osteoarthritis Cartilage. 2017 Dec;25(12):2134-2146. doi: 10.1016/j.joca.2017.08.019. Epub 2017 Sep 6.

15.

Renal denervation prevents long-term sequelae of ischemic renal injury.

Kim J, Padanilam BJ.

Kidney Int. 2015 Feb;87(2):350-8. doi: 10.1038/ki.2014.300. Epub 2014 Sep 10.

16.

Increased Fatty Acid Oxidation in Differentiated Proximal Tubular Cells Surviving a Reversible Episode of Acute Kidney Injury.

Bataille A, Galichon P, Chelghoum N, Oumoussa BM, Ziliotis MJ, Sadia I, Vandermeersch S, Simon-Tillaux N, Legouis D, Cohen R, Xu-Dubois YC, Commereuc M, Rondeau E, Le Crom S, Hertig A.

Cell Physiol Biochem. 2018;47(4):1338-1351. doi: 10.1159/000490819. Epub 2018 Jun 19.

17.

Dynamic expression and roles of sequestome‑1/p62 in LPS‑induced acute kidney injury in mice.

Li T, Zhao J, Miao S, Xu Y, Xiao X, Liu Y.

Mol Med Rep. 2018 Jun;17(6):7618-7626. doi: 10.3892/mmr.2018.8809. Epub 2018 Mar 28.

18.

Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression.

Tampe B, Steinle U, Tampe D, Carstens JL, Korsten P, Zeisberg EM, Müller GA, Kalluri R, Zeisberg M.

Kidney Int. 2017 Jan;91(1):157-176. doi: 10.1016/j.kint.2016.07.042. Epub 2016 Sep 28.

PMID:
27692563
19.

Renal fibrosis: Primacy of the proximal tubule.

Gewin LS.

Matrix Biol. 2018 Aug;68-69:248-262. doi: 10.1016/j.matbio.2018.02.006. Epub 2018 Feb 6. Review.

20.

N-acetyl-cysteine increases cellular dysfunction in progressive chronic kidney damage after acute kidney injury by dampening endogenous antioxidant responses.

Small DM, Sanchez WY, Roy SF, Morais C, Brooks HL, Coombes JS, Johnson DW, Gobe GC.

Am J Physiol Renal Physiol. 2018 May 1;314(5):F956-F968. doi: 10.1152/ajprenal.00057.2017. Epub 2018 Jan 10.

Supplemental Content

Support Center