Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104


TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats.

Mosbach V, Poggi L, Viterbo D, Charpentier M, Richard GF.

Cell Rep. 2018 Feb 20;22(8):2146-2159. doi: 10.1016/j.celrep.2018.01.083.


Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.

Sundararajan R, Gellon L, Zunder RM, Freudenreich CH.

Genetics. 2010 Jan;184(1):65-77. doi: 10.1534/genetics.109.111039. Epub 2009 Nov 9. Erratum in: Genetics. 2011 Apr;187(4):1245.


Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast.

Richard GF, Viterbo D, Khanna V, Mosbach V, Castelain L, Dujon B.

PLoS One. 2014 Apr 18;9(4):e95611. doi: 10.1371/journal.pone.0095611. eCollection 2014.


Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy.

Mosbach V, Poggi L, Richard GF.

Curr Genet. 2019 Feb;65(1):17-28. doi: 10.1007/s00294-018-0865-1. Epub 2018 Jul 5. Review.


The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.

Ye Y, Kirkham-McCarthy L, Lahue RS.

DNA Repair (Amst). 2016 Jul;43:1-8. doi: 10.1016/j.dnarep.2016.04.012. Epub 2016 May 2.


Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

Sundararajan R, Freudenreich CH.

PLoS Genet. 2011 Mar;7(3):e1001339. doi: 10.1371/journal.pgen.1001339. Epub 2011 Mar 17.


RAD50 is required for efficient initiation of resection and recombinational repair at random, gamma-induced double-strand break ends.

Westmoreland J, Ma W, Yan Y, Van Hulle K, Malkova A, Resnick MA.

PLoS Genet. 2009 Sep;5(9):e1000656. doi: 10.1371/journal.pgen.1000656. Epub 2009 Sep 18.


Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex.

Richard GF, Goellner GM, McMurray CT, Haber JE.

EMBO J. 2000 May 15;19(10):2381-90.


The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats.

Kim JC, Harris ST, Dinter T, Shah KA, Mirkin SM.

Nat Struct Mol Biol. 2017 Jan;24(1):55-60. doi: 10.1038/nsmb.3334. Epub 2016 Dec 5.


DNA tandem repeat instability in the Escherichia coli chromosome is stimulated by mismatch repair at an adjacent CAG·CTG trinucleotide repeat.

Blackwood JK, Okely EA, Zahra R, Eykelenboom JK, Leach DR.

Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22582-6. doi: 10.1073/pnas.1012906108. Epub 2010 Dec 13.


The role of the Mre11-Rad50-Nbs1 complex in double-strand break repair-facts and myths.

Takeda S, Hoa NN, Sasanuma H.

J Radiat Res. 2016 Aug;57 Suppl 1:i25-i32. doi: 10.1093/jrr/rrw034. Epub 2016 Jun 15.


Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.

Zhu Z, Chung WH, Shim EY, Lee SE, Ira G.

Cell. 2008 Sep 19;134(6):981-94. doi: 10.1016/j.cell.2008.08.037.


Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats.

Richard GF, Dujon B, Haber JE.

Mol Gen Genet. 1999 Jun;261(4-5):871-82.


Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.

Viterbo D, Michoud G, Mosbach V, Dujon B, Richard GF.

DNA Repair (Amst). 2016 Jun;42:94-106. doi: 10.1016/j.dnarep.2016.03.002. Epub 2016 Mar 16.


The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends.

Clerici M, Mantiero D, Lucchini G, Longhese MP.

J Biol Chem. 2005 Nov 18;280(46):38631-8. Epub 2005 Sep 13.


Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast.

Fabre E, Dujon B, Richard GF.

Nucleic Acids Res. 2002 Aug 15;30(16):3540-7.


Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase.

Cinesi C, Aeschbach L, Yang B, Dion V.

Nat Commun. 2016 Nov 9;7:13272. doi: 10.1038/ncomms13272.

Supplemental Content

Support Center