Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease.

Wang HB, Loh DH, Whittaker DS, Cutler T, Howland D, Colwell CS.

eNeuro. 2018 Jan 3;5(1). pii: ENEURO.0431-17.2017. doi: 10.1523/ENEURO.0431-17.2017. eCollection 2018 Jan-Feb.

2.

Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease.

Whittaker DS, Loh DH, Wang HB, Tahara Y, Kuljis D, Cutler T, Ghiani CA, Shibata S, Block GD, Colwell CS.

J Biol Rhythms. 2018 Oct;33(5):535-554. doi: 10.1177/0748730418790401. Epub 2018 Aug 7.

PMID:
30084274
3.

Neurocardiovascular deficits in the Q175 mouse model of Huntington's disease.

Cutler TS, Park S, Loh DH, Jordan MC, Yokota T, Roos KP, Ghiani CA, Colwell CS.

Physiol Rep. 2017 Jun;5(11). pii: e13289. doi: 10.14814/phy2.13289.

4.

Progressive gene dose-dependent disruption of the methamphetamine-sensitive circadian oscillator-driven rhythms in a knock-in mouse model of Huntington's disease.

Ouk K, Aungier J, Morton AJ.

Exp Neurol. 2016 Dec;286:69-82. doi: 10.1016/j.expneurol.2016.09.007. Epub 2016 Sep 16.

PMID:
27646506
5.

The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep.

Loh DH, Kudo T, Truong D, Wu Y, Colwell CS.

PLoS One. 2013 Jul 30;8(7):e69993. doi: 10.1371/journal.pone.0069993. Print 2013.

6.
7.

Possible use of a H3R antagonist for the management of nonmotor symptoms in the Q175 mouse model of Huntington's disease.

Whittaker DS, Wang HB, Loh DH, Cachope R, Colwell CS.

Pharmacol Res Perspect. 2017 Oct;5(5). doi: 10.1002/prp2.344.

8.

Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease.

Kudo T, Schroeder A, Loh DH, Kuljis D, Jordan MC, Roos KP, Colwell CS.

Exp Neurol. 2011 Mar;228(1):80-90. doi: 10.1016/j.expneurol.2010.12.011. Epub 2010 Dec 22.

9.

The p75 neurotrophin receptor augments survival signaling in the striatum of pre-symptomatic Q175(WT/HD) mice.

Wehner AB, Milen AM, Albin RL, Pierchala BA.

Neuroscience. 2016 Jun 2;324:297-306. doi: 10.1016/j.neuroscience.2016.02.069. Epub 2016 Mar 3.

10.

Paradoxical function of orexin/hypocretin circuits in a mouse model of Huntington's disease.

Williams RH, Morton AJ, Burdakov D.

Neurobiol Dis. 2011 Jun;42(3):438-45. doi: 10.1016/j.nbd.2011.02.006. Epub 2011 Feb 13.

11.

Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease.

Smith GA, Rocha EM, McLean JR, Hayes MA, Izen SC, Isacson O, Hallett PJ.

Hum Mol Genet. 2014 Sep 1;23(17):4510-27. doi: 10.1093/hmg/ddu166. Epub 2014 Apr 12.

PMID:
24728190
12.

Chronic paroxetine treatment prevents disruption of methamphetamine-sensitive circadian oscillator in a transgenic mouse model of Huntington's disease.

Ouk K, Aungier J, Cuesta M, Morton AJ.

Neuropharmacology. 2018 Mar 15;131:337-350. doi: 10.1016/j.neuropharm.2017.12.033. Epub 2017 Dec 21.

PMID:
29274752
13.

The methamphetamine-sensitive circadian oscillator is dysfunctional in a transgenic mouse model of Huntington's disease.

Cuesta M, Aungier J, Morton AJ.

Neurobiol Dis. 2012 Jan;45(1):145-55. doi: 10.1016/j.nbd.2011.07.016. Epub 2011 Jul 28.

PMID:
21820053
14.

Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease.

Indersmitten T, Tran CH, Cepeda C, Levine MS.

J Neurophysiol. 2015 Apr 1;113(7):2953-66. doi: 10.1152/jn.01056.2014. Epub 2015 Feb 11.

15.

Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington's disease.

Pallier PN, Maywood ES, Zheng Z, Chesham JE, Inyushkin AN, Dyball R, Hastings MH, Morton AJ.

J Neurosci. 2007 Jul 18;27(29):7869-78.

16.

Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington's disease.

Fisher SP, Black SW, Schwartz MD, Wilk AJ, Chen TM, Lincoln WU, Liu HW, Kilduff TS, Morairty SR.

Brain. 2013 Jul;136(Pt 7):2159-72. doi: 10.1093/brain/awt132.

PMID:
23801738
17.

Disruption of peripheral circadian timekeeping in a mouse model of Huntington's disease and its restoration by temporally scheduled feeding.

Maywood ES, Fraenkel E, McAllister CJ, Wood N, Reddy AB, Hastings MH, Morton AJ.

J Neurosci. 2010 Jul 28;30(30):10199-204. doi: 10.1523/JNEUROSCI.1694-10.2010.

18.

Quantitative Electroencephalographic Analysis Provides an Early-Stage Indicator of Disease Onset and Progression in the zQ175 Knock-In Mouse Model of Huntington's Disease.

Fisher SP, Schwartz MD, Wurts-Black S, Thomas AM, Chen TM, Miller MA, Palmerston JB, Kilduff TS, Morairty SR.

Sleep. 2016 Feb 1;39(2):379-91. doi: 10.5665/sleep.5448.

19.

Sex Differences in Circadian Dysfunction in the BACHD Mouse Model of Huntington's Disease.

Kuljis DA, Gad L, Loh DH, MacDowell Kaswan Z, Hitchcock ON, Ghiani CA, Colwell CS.

PLoS One. 2016 Feb 12;11(2):e0147583. doi: 10.1371/journal.pone.0147583. eCollection 2016.

20.

Behavioral therapy reverses circadian deficits in a transgenic mouse model of Huntington's disease.

Cuesta M, Aungier J, Morton AJ.

Neurobiol Dis. 2014 Mar;63:85-91. doi: 10.1016/j.nbd.2013.11.008. Epub 2013 Nov 20.

PMID:
24269914

Supplemental Content

Support Center