Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington's Disease.

Virlogeux A, Moutaux E, Christaller W, Genoux A, Bruyère J, Fino E, Charlot B, Cazorla M, Saudou F.

Cell Rep. 2018 Jan 2;22(1):110-122. doi: 10.1016/j.celrep.2017.12.013.

2.

TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease.

Zhao X, Chen XQ, Han E, Hu Y, Paik P, Ding Z, Overman J, Lau AL, Shahmoradian SH, Chiu W, Thompson LM, Wu C, Mobley WC.

Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):E5655-64. doi: 10.1073/pnas.1603020113. Epub 2016 Sep 6.

3.

Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.

Buren C, Parsons MP, Smith-Dijak A, Raymond LA.

Neurobiol Dis. 2016 Mar;87:80-90. doi: 10.1016/j.nbd.2015.12.009. Epub 2015 Dec 19.

PMID:
26711622
4.

Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.

Wu J, Ryskamp DA, Liang X, Egorova P, Zakharova O, Hung G, Bezprozvanny I.

J Neurosci. 2016 Jan 6;36(1):125-41. doi: 10.1523/JNEUROSCI.1038-15.2016.

5.

Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice.

Deng YP, Wong T, Bricker-Anthony C, Deng B, Reiner A.

Neurobiol Dis. 2013 Dec;60:89-107. doi: 10.1016/j.nbd.2013.08.009. Epub 2013 Aug 19.

6.

Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites.

Liot G, Zala D, Pla P, Mottet G, Piel M, Saudou F.

J Neurosci. 2013 Apr 10;33(15):6298-309. doi: 10.1523/JNEUROSCI.2033-12.2013.

7.

Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease.

Plotkin JL, Day M, Peterson JD, Xie Z, Kress GJ, Rafalovich I, Kondapalli J, Gertler TS, Flajolet M, Greengard P, Stavarache M, Kaplitt MG, Rosinski J, Chan CS, Surmeier DJ.

Neuron. 2014 Jul 2;83(1):178-88. doi: 10.1016/j.neuron.2014.05.032.

8.

Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3.

Wójtowicz AM, Dvorzhak A, Semtner M, Grantyn R.

Front Neural Circuits. 2013 Nov 26;7:188. doi: 10.3389/fncir.2013.00188. eCollection 2013.

9.

Pathogenic Huntington Alters BMP Signaling and Synaptic Growth through Local Disruptions of Endosomal Compartments.

Akbergenova Y, Littleton JT.

J Neurosci. 2017 Mar 22;37(12):3425-3439. doi: 10.1523/JNEUROSCI.2752-16.2017. Epub 2017 Feb 24.

10.

Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice.

Rothe T, Deliano M, Wójtowicz AM, Dvorzhak A, Harnack D, Paul S, Vagner T, Melnick I, Stark H, Grantyn R.

Neuroscience. 2015 Dec 17;311:519-38. doi: 10.1016/j.neuroscience.2015.10.039. Epub 2015 Nov 4.

PMID:
26546830
11.

Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease.

Ferrante A, Martire A, Pepponi R, Varani K, Vincenzi F, Ferraro L, Beggiato S, Tebano MT, Popoli P.

Neurobiol Dis. 2014 Nov;71:193-204. doi: 10.1016/j.nbd.2014.08.013. Epub 2014 Aug 15.

PMID:
25132555
12.

A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease.

Puigdellívol M, Cherubini M, Brito V, Giralt A, Suelves N, Ballesteros J, Zamora-Moratalla A, Martín ED, Eipper BA, Alberch J, Ginés S.

Hum Mol Genet. 2015 Dec 20;24(25):7265-85. doi: 10.1093/hmg/ddv426. Epub 2015 Oct 12.

13.

Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease.

Ma Q, Yang J, Li T, Milner TA, Hempstead BL.

Neurobiol Dis. 2015 Oct;82:466-477. doi: 10.1016/j.nbd.2015.08.008. Epub 2015 Aug 15.

14.

Presynaptic dysfunction in Huntington's disease.

Rozas JL, Gómez-Sánchez L, Tomás-Zapico C, Lucas JJ, Fernández-Chacón R.

Biochem Soc Trans. 2010 Apr;38(2):488-92. doi: 10.1042/BST0380488. Review.

PMID:
20298208
15.
16.

Reduced striatal acetylcholine efflux in the R6/2 mouse model of Huntington's disease: an examination of the role of altered inhibitory and excitatory mechanisms.

Farrar AM, Callahan JW, Abercrombie ED.

Exp Neurol. 2011 Dec;232(2):119-25. doi: 10.1016/j.expneurol.2011.08.010. Epub 2011 Aug 16.

PMID:
21864528
17.

Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease.

Parievsky A, Moore C, Kamdjou T, Cepeda C, Meshul CK, Levine MS.

Neurobiol Dis. 2017 Dec;108:29-44. doi: 10.1016/j.nbd.2017.07.020. Epub 2017 Jul 27.

18.

[Huntington's disease: cellular and molecular basis of pathology].

Korzhova VV, Artamonov DN, Vlasova OL, Bezprozvannyĭ IB.

Zh Vyssh Nerv Deiat Im I P Pavlova. 2014 Jul-Aug;64(4):359-75. Review. Russian.

PMID:
25723022
19.

Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington disease.

Petrasch-Parwez E, Nguyen HP, Löbbecke-Schumacher M, Habbes HW, Wieczorek S, Riess O, Andres KH, Dermietzel R, Von Hörsten S.

J Comp Neurol. 2007 Apr 10;501(5):716-30. Erratum in: J Comp Neurol. 2007 May 20;502(3):483.

PMID:
17299753
20.

Deficits of glutamate transmission in the striatum of toxic and genetic models of Huntington's disease.

Rossi S, Prosperetti C, Picconi B, De Chiara V, Mataluni G, Bernardi G, Calabresi P, Centonze D.

Neurosci Lett. 2006 Dec 13;410(1):6-10. Epub 2006 Oct 27.

PMID:
17070651

Supplemental Content

Support Center