Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells.

Wiatr K, Szlachcic WJ, Trzeciak M, Figlerowicz M, Figiel M.

Mol Neurobiol. 2018 Apr;55(4):3351-3371. doi: 10.1007/s12035-017-0477-7. Epub 2017 May 11. Review.

2.

Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells.

Juopperi TA, Kim WR, Chiang CH, Yu H, Margolis RL, Ross CA, Ming GL, Song H.

Mol Brain. 2012 May 21;5:17. doi: 10.1186/1756-6606-5-17.

3.

Chromosomal instability during neurogenesis in Huntington's disease.

Ruzo A, Croft GF, Metzger JJ, Galgoczi S, Gerber LJ, Pellegrini C, Wang H Jr, Fenner M, Tse S, Marks A, Nchako C, Brivanlou AH.

Development. 2018 Jan 29;145(2). pii: dev156844. doi: 10.1242/dev.156844.

4.

The Generation of Mouse and Human Huntington Disease iPS Cells Suitable for In vitro Studies on Huntingtin Function.

Szlachcic WJ, Wiatr K, Trzeciak M, Figlerowicz M, Figiel M.

Front Mol Neurosci. 2017 Aug 8;10:253. doi: 10.3389/fnmol.2017.00253. eCollection 2017. Erratum in: Front Mol Neurosci. 2017 Sep 28;10 :312.

5.

Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes.

HD iPSC Consortium.

Cell Stem Cell. 2012 Aug 3;11(2):264-78. doi: 10.1016/j.stem.2012.04.027. Epub 2012 Jun 28.

6.

Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington's disease.

Putkhao K, Kocerha J, Cho IK, Yang J, Parnpai R, Chan AW.

Stem Cells Dev. 2013 Apr 15;22(8):1198-205. doi: 10.1089/scd.2012.0469. Epub 2013 Jan 15.

7.

RNA toxicity induced by expanded CAG repeats in Huntington's disease.

Martí E.

Brain Pathol. 2016 Nov;26(6):779-786. doi: 10.1111/bpa.12427. Review.

PMID:
27529325
8.

Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype.

Wegrzynowicz M, Bichell TJ, Soares BD, Loth MK, McGlothan JS, Mori S, Alikhan FS, Hua K, Coughlin JM, Holt HK, Jetter CS, Pomper MG, Osmand AP, Guilarte TR, Bowman AB.

J Huntingtons Dis. 2015;4(1):17-36.

9.

Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes.

Jacquet L, Neueder A, Földes G, Karagiannis P, Hobbs C, Jolinon N, Mioulane M, Sakai T, Harding SE, Ilic D.

PLoS One. 2015 May 20;10(5):e0126860. doi: 10.1371/journal.pone.0126860. eCollection 2015.

10.

Towards a transgenic model of Huntington's disease in a non-human primate.

Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AW.

Nature. 2008 Jun 12;453(7197):921-4. doi: 10.1038/nature06975. Epub 2008 May 18.

11.

Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels.

Shin A, Shin B, Shin JW, Kim KH, Atwal RS, Hope JM, Gillis T, Leszyk JD, Shaffer SA, Lee R, Kwak S, MacDonald ME, Gusella JF, Seong IS, Lee JM.

Hum Mol Genet. 2017 Apr 1;26(7):1258-1267. doi: 10.1093/hmg/ddx033.

12.

Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice.

Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S, Li XJ.

J Biol Chem. 2010 Apr 2;285(14):10653-61. doi: 10.1074/jbc.M109.083287. Epub 2010 Feb 9.

13.

Expanding the Spectrum of Genes Involved in Huntington Disease Using a Combined Clinical and Genetic Approach.

Mariani LL, Tesson C, Charles P, Cazeneuve C, Hahn V, Youssov K, Freeman L, Grabli D, Roze E, Noël S, Peuvion JN, Bachoud-Levi AC, Brice A, Stevanin G, Durr A.

JAMA Neurol. 2016 Sep 1;73(9):1105-14. doi: 10.1001/jamaneurol.2016.2215.

PMID:
27400454
14.

Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death.

Conforti P, Camnasio S, Mutti C, Valenza M, Thompson M, Fossale E, Zeitlin S, MacDonald ME, Zuccato C, Cattaneo E.

Neurobiol Dis. 2013 Feb;50:160-70. doi: 10.1016/j.nbd.2012.10.015. Epub 2012 Oct 23.

PMID:
23089356
15.

Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin.

Caron NS, Desmond CR, Xia J, Truant R.

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14610-5. doi: 10.1073/pnas.1301342110. Epub 2013 Jul 29.

16.

Huntington's Disease: Relationship Between Phenotype and Genotype.

Sun YM, Zhang YB, Wu ZY.

Mol Neurobiol. 2017 Jan;54(1):342-348. doi: 10.1007/s12035-015-9662-8. Epub 2016 Jan 7. Review.

PMID:
26742514
17.

Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease.

Keryer G, Pineda JR, Liot G, Kim J, Dietrich P, Benstaali C, Smith K, Cordelières FP, Spassky N, Ferrante RJ, Dragatsis I, Saudou F.

J Clin Invest. 2011 Nov;121(11):4372-82. doi: 10.1172/JCI57552. Epub 2011 Oct 10.

18.

Use of human stem cells in Huntington disease modeling and translational research.

Golas MM, Sander B.

Exp Neurol. 2016 Apr;278:76-90. doi: 10.1016/j.expneurol.2016.01.021. Epub 2016 Jan 27. Review.

PMID:
26826449
19.

Mechanisms of neuronal cell death in Huntington's disease.

Sawa A, Tomoda T, Bae BI.

Cytogenet Genome Res. 2003;100(1-4):287-95. Review.

PMID:
14526190
20.

Advances in huntington disease drug discovery: novel approaches to model disease phenotypes.

Bard J, Wall MD, Lazari O, Arjomand J, Munoz-Sanjuan I.

J Biomol Screen. 2014 Feb;19(2):191-204. doi: 10.1177/1087057113510320. Epub 2013 Nov 6. Review.

PMID:
24196395

Supplemental Content

Support Center