Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Markov modeling reveals novel intracellular modulation of the human TREK-2 selectivity filter.

Harrigan MP, McKiernan KA, Shanmugasundaram V, Denny RA, Pande VS.

Sci Rep. 2017 Apr 4;7(1):632. doi: 10.1038/s41598-017-00256-y.

2.

Mechanism of Mechanosensitive Gating of the TREK-2 Potassium Channel.

Brennecke JT, de Groot BL.

Biophys J. 2018 Mar 27;114(6):1336-1343. doi: 10.1016/j.bpj.2018.01.030.

PMID:
29590591
3.

The effects of stretch activation on ionic selectivity of the TREK-2 K2P K+ channel.

Nematian-Ardestani E, Jarerattanachat V, Aryal P, Sansom MSP, Tucker SJ.

Channels (Austin). 2017 Sep 3;11(5):482-486. doi: 10.1080/19336950.2017.1356955. Epub 2017 Jul 19.

4.

K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site.

Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA, Minor DL Jr.

Nature. 2017 Jul 20;547(7663):364-368. doi: 10.1038/nature22988. Epub 2017 Jul 10.

5.

Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel.

Lei Q, Pan XQ, Chang S, Malkowicz SB, Guzzo TJ, Malykhina AP.

J Physiol. 2014 Jul 15;592(14):3013-30. doi: 10.1113/jphysiol.2014.271718. Epub 2014 May 6.

6.

Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel.

Zhuo RG, Peng P, Liu XY, Yan HT, Xu JP, Zheng JQ, Wei XL, Ma XY.

Sci Rep. 2016 Feb 16;6:21248. doi: 10.1038/srep21248.

7.

The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2.

Zhuo RG, Peng P, Liu XY, Zhang SZ, Xu JP, Zheng JQ, Wei XL, Ma XY.

J Physiol Biochem. 2015 Dec;71(4):601-10. doi: 10.1007/s13105-015-0422-z. Epub 2015 Aug 14.

PMID:
26271386
8.

Gating, Regulation, and Structure in K2P K+ Channels: In Varietate Concordia?

Niemeyer MI, Cid LP, González W, Sepúlveda FV.

Mol Pharmacol. 2016 Sep;90(3):309-17. doi: 10.1124/mol.116.103895. Epub 2016 Jun 6. Review.

9.

External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter.

Ma XY, Yu JM, Zhang SZ, Liu XY, Wu BH, Wei XL, Yan JQ, Sun HL, Yan HT, Zheng JQ.

J Biol Chem. 2011 Nov 18;286(46):39813-22. doi: 10.1074/jbc.M111.264788. Epub 2011 Sep 29.

10.

Sodium permeable and "hypersensitive" TREK-1 channels cause ventricular tachycardia.

Decher N, Ortiz-Bonnin B, Friedrich C, Schewe M, Kiper AK, Rinné S, Seemann G, Peyronnet R, Zumhagen S, Bustos D, Kockskämper J, Kohl P, Just S, González W, Baukrowitz T, Stallmeyer B, Schulze-Bahr E.

EMBO Mol Med. 2017 Apr;9(4):403-414. doi: 10.15252/emmm.201606690.

11.

Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states.

McClenaghan C, Schewe M, Aryal P, Carpenter EP, Baukrowitz T, Tucker SJ.

J Gen Physiol. 2016 Jun;147(6):497-505. doi: 10.1085/jgp.201611601.

12.

Properties of single two-pore domain TREK-2 channels expressed in mammalian cells.

Kang D, Choe C, Cavanaugh E, Kim D.

J Physiol. 2007 Aug 15;583(Pt 1):57-69. Epub 2007 May 31.

13.

Altered expression and modulation of the two-pore-domain (K2P) mechanogated potassium channel TREK-1 in overactive human detrusor.

Pineda RH, Nedumaran B, Hypolite J, Pan XQ, Wilson S, Meacham RB, Malykhina AP.

Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F535-F546. doi: 10.1152/ajprenal.00638.2016. Epub 2017 May 24.

PMID:
28539337
14.

Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel.

Zhuo RG, Liu XY, Zhang SZ, Wei XL, Zheng JQ, Xu JP, Ma XY.

Neuroscience. 2015 Aug 6;300:85-93. doi: 10.1016/j.neuroscience.2015.05.012. Epub 2015 May 14.

PMID:
25982558
15.

Regulation of the Mechano-Gated K2P Channel TREK-1 by Membrane Phospholipids.

Chemin J, Patel AJ, Delmas P, Sachs F, Lazdunski M, Honore E.

Curr Top Membr. 2007;59:155-70. doi: 10.1016/S1063-5823(06)59007-6. Epub 2007 Apr 17.

PMID:
25168137
16.

Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels.

Levitz J, Royal P, Comoglio Y, Wdziekonski B, Schaub S, Clemens DM, Isacoff EY, Sandoz G.

Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4194-9. doi: 10.1073/pnas.1522459113. Epub 2016 Mar 28.

17.

TWIK-related two-pore domain potassium channel TREK-1 in carotid endothelium of normotensive and hypertensive mice.

Pokojski S, Busch C, Grgic I, Kacik M, Salman W, Preisig-Müller R, Heyken WT, Daut J, Hoyer J, Köhler R.

Cardiovasc Res. 2008 Jul 1;79(1):80-8. doi: 10.1093/cvr/cvn069. Epub 2008 Mar 13. Retraction in: Pokojski S, Busch C, Grgic I, Kacik M, Salman W, Preisig-Müller R, Heyken WT, Daut J, Hoyer J, Köhler R. Cardiovasc Res. 2008 Nov 1;80(2):320.

PMID:
18339646
18.

The membrane-bound state of K2P potassium channels.

Treptow W, Klein ML.

J Am Chem Soc. 2010 Jun 16;132(23):8145-51. doi: 10.1021/ja102191s.

PMID:
20491479
19.

Expression of stretch-activated two-pore potassium channels in human myometrium in pregnancy and labor.

Buxton IL, Singer CA, Tichenor JN.

PLoS One. 2010 Aug 25;5(8):e12372. doi: 10.1371/journal.pone.0012372.

20.

Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice.

Aller MI, Wisden W.

Neuroscience. 2008 Feb 19;151(4):1154-72. doi: 10.1016/j.neuroscience.2007.12.011. Epub 2007 Dec 23.

PMID:
18222039

Supplemental Content

Support Center