Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Inhibition of MAPK-Erk pathway in vivo attenuates aortic valve disease processes in Emilin1-deficient mouse model.

Munjal C, Jegga AG, Opoka AM, Stoilov I, Norris RA, Thomas CJ, Smith JM, Mecham RP, Bressan GM, Hinton RB.

Physiol Rep. 2017 Mar;5(5). pii: e13152. doi: 10.14814/phy2.13152.

2.

TGF-β mediates early angiogenesis and latent fibrosis in an Emilin1-deficient mouse model of aortic valve disease.

Munjal C, Opoka AM, Osinska H, James JF, Bressan GM, Hinton RB.

Dis Model Mech. 2014 Aug;7(8):987-96. doi: 10.1242/dmm.015255.

3.

Proteomic Alterations Associated with Biomechanical Dysfunction are Early Processes in the Emilin1 Deficient Mouse Model of Aortic Valve Disease.

Angel PM, Narmoneva DA, Sewell-Loftin MK, Munjal C, Dupuis L, Landis BJ, Jegga A, Kern CB, Merryman WD, Baldwin HS, Bressan GM, Hinton RB.

Ann Biomed Eng. 2017 Nov;45(11):2548-2562. doi: 10.1007/s10439-017-1899-0. Epub 2017 Aug 15.

4.

Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease.

Krishnamurthy VK, Opoka AM, Kern CB, Guilak F, Narmoneva DA, Hinton RB.

Matrix Biol. 2012 Apr;31(3):197-205. doi: 10.1016/j.matbio.2012.01.001. Epub 2012 Jan 12.

5.

Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase.

El Accaoui RN, Gould ST, Hajj GP, Chu Y, Davis MK, Kraft DC, Lund DD, Brooks RM, Doshi H, Zimmerman KA, Kutschke W, Anseth KS, Heistad DD, Weiss RM.

Am J Physiol Heart Circ Physiol. 2014 May;306(9):H1302-13. doi: 10.1152/ajpheart.00392.2013. Epub 2014 Mar 7.

6.

Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1.

Chen J, Fan J, Wang S, Sun Z.

Hypertension. 2018 May;71(5):877-885. doi: 10.1161/HYPERTENSIONAHA.117.10560. Epub 2018 Mar 26.

7.

Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway.

Feng X, Li JM, Liao XB, Hu YR, Shang BP, Zhang ZY, Yuan LQ, Xie H, Sheng ZF, Tang H, Zhang W, Gu L, Zhou XM.

Amino Acids. 2012 Oct;43(4):1697-704. Epub 2012 Mar 1.

PMID:
22383088
8.

Molecular mechanisms underlying the onset of degenerative aortic valve disease.

Hakuno D, Kimura N, Yoshioka M, Fukuda K.

J Mol Med (Berl). 2009 Jan;87(1):17-24. doi: 10.1007/s00109-008-0400-9. Epub 2008 Sep 3. Review.

PMID:
18766323
9.

Elastin haploinsufficiency results in progressive aortic valve malformation and latent valve disease in a mouse model.

Hinton RB, Adelman-Brown J, Witt S, Krishnamurthy VK, Osinska H, Sakthivel B, James JF, Li DY, Narmoneva DA, Mecham RP, Benson DW.

Circ Res. 2010 Aug 20;107(4):549-57. doi: 10.1161/CIRCRESAHA.110.221358. Epub 2010 Jun 24.

10.

Extracellular matrix remodeling and cell phenotypic changes in dysplastic and hemodynamically altered semilunar human cardiac valves.

Stephens EH, Shangkuan J, Kuo JJ, Carroll JL, Kearney DL, Carberry KE, Fraser CD Jr, Grande-Allen KJ.

Cardiovasc Pathol. 2011 Sep-Oct;20(5):e157-67. doi: 10.1016/j.carpath.2010.07.004. Epub 2010 Sep 2.

11.

Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice.

Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Patnaik S, Marugan JJ, Judge DP, Dietz HC.

Science. 2011 Apr 15;332(6027):358-61. doi: 10.1126/science.1192149.

12.

Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice.

Jung JJ, Razavian M, Kim HY, Ye Y, Golestani R, Toczek J, Zhang J, Sadeghi MM.

Sci Rep. 2016 Sep 13;6:32659. doi: 10.1038/srep32659.

13.

Deficiency in the anti-aging gene Klotho promotes aortic valve fibrosis through AMPKα-mediated activation of RUNX2.

Chen J, Lin Y, Sun Z.

Aging Cell. 2016 Oct;15(5):853-60. doi: 10.1111/acel.12494. Epub 2016 May 31.

14.

Dysregulation of hyaluronan homeostasis during aortic valve disease.

Krishnamurthy VK, Stout AJ, Sapp MC, Matuska B, Lauer ME, Grande-Allen KJ.

Matrix Biol. 2017 Oct;62:40-57. doi: 10.1016/j.matbio.2016.11.003. Epub 2016 Nov 15.

PMID:
27856308
15.

COX2 inhibition reduces aortic valve calcification in vivo.

Wirrig EE, Gomez MV, Hinton RB, Yutzey KE.

Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):938-47. doi: 10.1161/ATVBAHA.114.305159. Epub 2015 Feb 26.

16.

Aortic valvular heart disease: Is there a place for angiotensin-converting-enzyme inhibitors?

Elder DH, McAlpine-Scott V, Choy AM, Struthers AD, Lang CC.

Expert Rev Cardiovasc Ther. 2013 Jan;11(1):107-14. doi: 10.1586/erc.12.143. Review.

PMID:
23259450
17.

Augmented osteogenic responses in human aortic valve cells exposed to oxLDL and TLR4 agonist: a mechanistic role of Notch1 and NF-κB interaction.

Zeng Q, Song R, Ao L, Xu D, Venardos N, Fullerton DA, Meng X.

PLoS One. 2014 May 8;9(5):e95400. doi: 10.1371/journal.pone.0095400. eCollection 2014.

18.

Loss of β-catenin promotes chondrogenic differentiation of aortic valve interstitial cells.

Fang M, Alfieri CM, Hulin A, Conway SJ, Yutzey KE.

Arterioscler Thromb Vasc Biol. 2014 Dec;34(12):2601-8. doi: 10.1161/ATVBAHA.114.304579. Epub 2014 Oct 23.

19.

Activation of TLR3 induces osteogenic responses in human aortic valve interstitial cells through the NF-κB and ERK1/2 pathways.

Zhan Q, Song R, Zeng Q, Yao Q, Ao L, Xu D, Fullerton DA, Meng X.

Int J Biol Sci. 2015 Mar 20;11(4):482-93. doi: 10.7150/ijbs.10905. eCollection 2015.

20.

Nonbiased Molecular Screening Identifies Novel Molecular Regulators of Fibrogenic and Proliferative Signaling in Myxomatous Mitral Valve Disease.

Thalji NM, Hagler MA, Zhang H, Casaclang-Verzosa G, Nair AA, Suri RM, Miller JD.

Circ Cardiovasc Genet. 2015 Jun;8(3):516-28. doi: 10.1161/CIRCGENETICS.114.000921. Epub 2015 Mar 26.

Supplemental Content

Support Center