Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

When more is better: how data sharing would accelerate genomic selection of crop plants.

Spindel JE, McCouch SR.

New Phytol. 2016 Dec;212(4):814-826. doi: 10.1111/nph.14174. Epub 2016 Sep 26.

2.

Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

Moin M, Bakshi A, Saha A, Dutta M, Kirti PB.

Brief Funct Genomics. 2017 Jul 1;16(4):238-247. doi: 10.1093/bfgp/elw041.

PMID:
28137760
3.

A map of rice genome variation reveals the origin of cultivated rice.

Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B.

Nature. 2012 Oct 25;490(7421):497-501. doi: 10.1038/nature11532. Epub 2012 Oct 3.

PMID:
23034647
4.

Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species.

Parent B, Tardieu F.

New Phytol. 2012 May;194(3):760-74. doi: 10.1111/j.1469-8137.2012.04086.x. Epub 2012 Mar 5.

5.

The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.

Batley J, Edwards D.

Curr Opin Plant Biol. 2016 Apr;30:78-81. doi: 10.1016/j.pbi.2016.02.002. Epub 2016 Feb 27. Review.

PMID:
26926905
6.

Goals and hurdles for a successful implementation of genomic selection in breeding programme for selected annual and perennial crops.

Jonas E, de Koning DJ.

Biotechnol Genet Eng Rev. 2016 Apr - Oct;32(1-2):18-42. doi: 10.1080/02648725.2016.1177377. Epub 2016 May 16. Review.

PMID:
27181295
7.

High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.

Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL.

J Integr Plant Biol. 2012 May;54(5):312-20. doi: 10.1111/j.1744-7909.2012.01116.x. Review.

PMID:
22420640
8.

Wheat functional genomics and engineering crop improvement.

Francki M, Appels R.

Genome Biol. 2002;3(5):reviews1013. Epub 2002 Apr 23. Review.

9.

Targeted genome modification of crop plants using a CRISPR-Cas system.

Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C.

Nat Biotechnol. 2013 Aug;31(8):686-8. doi: 10.1038/nbt.2650. No abstract available.

PMID:
23929338
10.

Targeted modification of plant genomes for precision crop breeding.

Hilscher J, B├╝rstmayr H, Stoger E.

Biotechnol J. 2017 Jan;12(1). doi: 10.1002/biot.201600173. Epub 2016 Oct 11. Review.

PMID:
27726285
11.

Advances and Challenges in Genomic Selection for Disease Resistance.

Poland J, Rutkoski J.

Annu Rev Phytopathol. 2016 Aug 4;54:79-98. doi: 10.1146/annurev-phyto-080615-100056. Review.

PMID:
27491433
12.

Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.

Bohra A, Jha UC, Kishor PB, Pandey S, Singh NP.

Biotechnol Adv. 2014 Dec;32(8):1410-28. doi: 10.1016/j.biotechadv.2014.09.001. Epub 2014 Sep 6. Review.

PMID:
25196916
13.

Genomics-assisted breeding for crop improvement.

Varshney RK, Graner A, Sorrells ME.

Trends Plant Sci. 2005 Dec;10(12):621-30. Epub 2005 Nov 14. Review.

PMID:
16290213
14.

Global agricultural intensification during climate change: a role for genomics.

Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, de Oliveira AC, Cseke LJ, Dempewolf H, De Pace C, Edwards D, Gepts P, Greenland A, Hall AE, Henry R, Hori K, Howe GT, Hughes S, Humphreys M, Lightfoot D, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Tuberosa R, Valliyodan B, Varshney RK, Yano M.

Plant Biotechnol J. 2016 Apr;14(4):1095-8. doi: 10.1111/pbi.12467. Epub 2015 Sep 11. Review.

15.

How can we use genomics to improve cereals with rice as a reference genome?

Xu Y, McCouch SR, Zhang Q.

Plant Mol Biol. 2005 Sep;59(1):7-26.

PMID:
16217598
16.

Genome editing for crop improvement: Challenges and opportunities.

Abdallah NA, Prakash CS, McHughen AG.

GM Crops Food. 2015;6(4):183-205. doi: 10.1080/21645698.2015.1129937.

17.

Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects.

Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, Latif MA.

Biomed Res Int. 2013;2013:963525. doi: 10.1155/2013/963525. Epub 2012 Dec 24. Review.

18.

Natural variations and genome-wide association studies in crop plants.

Huang X, Han B.

Annu Rev Plant Biol. 2014;65:531-51. doi: 10.1146/annurev-arplant-050213-035715. Epub 2013 Nov 20. Review.

PMID:
24274033
19.

Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

Yabe S, Yamasaki M, Ebana K, Hayashi T, Iwata H.

PLoS One. 2016 Apr 26;11(4):e0153945. doi: 10.1371/journal.pone.0153945. eCollection 2016.

20.

Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery.

Hickey JM, Chiurugwi T, Mackay I, Powell W; Implementing Genomic Selection in CGIAR Breeding Programs Workshop Participants.

Nat Genet. 2017 Aug 30;49(9):1297-1303. doi: 10.1038/ng.3920.

PMID:
28854179

Supplemental Content

Support Center