Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Effects of transcranial stimulating electrode montages over the head for lower-extremity transcranial motor evoked potential monitoring.

Tomio R, Akiyama T, Ohira T, Yoshida K.

J Neurosurg. 2017 Jun;126(6):1951-1958. doi: 10.3171/2016.7.JNS16643. Epub 2016 Sep 23.

PMID:
27662531
2.

The impact of several craniotomies on transcranial motor evoked potential monitoring during neurosurgery.

Tomio R, Akiyama T, Toda M, Ohira T, Yoshida K.

J Neurosurg. 2017 Sep;127(3):543-552. doi: 10.3171/2016.7.JNS152759. Epub 2016 Oct 7.

PMID:
27715440
3.

Transcranial electric stimulation for intraoperative motor evoked potential monitoring: Stimulation parameters and electrode montages.

Szelényi A, Kothbauer KF, Deletis V.

Clin Neurophysiol. 2007 Jul;118(7):1586-95. Epub 2007 May 15.

PMID:
17507288
4.

Movement Along the Spine Induced by Transcranial Electrical Stimulation Related Electrode Positioning.

Hoebink EA, Journée HL, de Kleuver M, Berends H, Racz I, van Hal C.

Spine (Phila Pa 1976). 2016 Jul 15;41(14):1128-32. doi: 10.1097/BRS.0000000000001495.

PMID:
26890949
5.

Visualization of the electric field evoked by transcranial electric stimulation during a craniotomy using the finite element method.

Tomio R, Akiyama T, Horikoshi T, Ohira T, Yoshida K.

J Neurosci Methods. 2015 Dec 30;256:157-67. doi: 10.1016/j.jneumeth.2015.09.014. Epub 2015 Sep 29.

PMID:
26391774
6.

An Alternative Transcranial Motor Evoked Potential Montage to Minimize Ipsilateral "Crossover" Motor Responses.

Chen JH, Gonzalez AA, Shilian P, Cheongsiatmoy J.

Neurodiagn J. 2018;58(4):218-225. doi: 10.1080/21646821.2018.1532198. Epub 2018 Nov 2.

PMID:
30388936
7.
8.

Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

Shigematsu H, Kawaguchi M, Hayashi H, Takatani T, Iwata E, Tanaka M, Okuda A, Morimoto Y, Masuda K, Tanaka Y, Tanaka Y.

Spine J. 2017 Oct;17(10):1472-1479. doi: 10.1016/j.spinee.2017.05.004. Epub 2017 May 5.

PMID:
28483707
9.

Intraoperative monitoring of myogenic motor-evoked potentials from the external anal sphincter muscle to transcranial electrical stimulation.

Inoue S, Kawaguchi M, Takashi S, Kakimoto M, Sakamoto T, Kitaguchi K, Furuya H, Morimoto T, Sakaki T.

Spine (Phila Pa 1976). 2002 Nov 1;27(21):E454-9.

PMID:
12438996
10.

Cerebellar Lobules Optimal Stimulation (CLOS): A Computational Pipeline to Optimize Cerebellar Lobule-Specific Electric Field Distribution.

Rezaee Z, Dutta A.

Front Neurosci. 2019 Apr 12;13:266. doi: 10.3389/fnins.2019.00266. eCollection 2019.

11.

Comparison of Intraoperative Motor Evoked Potentials Monitoring with Direct Cranial Stimulation by Peg-Screw and Transcranial Stimulation by Corkscrew for Supratentorial Surgery.

Kanaya K, Goto T, Horiuchi T, Hongo K.

World Neurosurg. 2019 Jul;127:e1044-e1050. doi: 10.1016/j.wneu.2019.04.039. Epub 2019 Apr 10.

PMID:
30980975
12.

The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.

Manoli Z, Parazzini M, Ravazzani P, Samaras T.

Med Phys. 2017 Jan;44(1):262-271. doi: 10.1002/mp.12006. Epub 2017 Jan 3.

PMID:
28044315
13.

Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia.

Galletta EE, Cancelli A, Cottone C, Simonelli I, Tecchio F, Bikson M, Marangolo P.

Brain Stimul. 2015 Nov-Dec;8(6):1108-15. doi: 10.1016/j.brs.2015.06.018. Epub 2015 Jul 2.

PMID:
26198364
14.

Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES).

Bortoletto M, Rodella C, Salvador R, Miranda PC, Miniussi C.

Brain Stimul. 2016 Jul-Aug;9(4):525-8. doi: 10.1016/j.brs.2016.03.001. Epub 2016 Mar 9.

PMID:
27061368
15.

Comparison between the C5 or C6-Cz electrode assembly and C3 or C4-Cz assembly for transcranial electric motor activation of muscular response of the contralateral facial nerve.

Verst SM, Chung TM, Sucena AC, Maldaun MV, Aguiar PH.

Acta Neurochir (Wien). 2012 Dec;154(12):2229-35. doi: 10.1007/s00701-012-1505-z. Epub 2012 Oct 4.

PMID:
23053280
16.

Intra-operative monitoring of lower extremity motor-evoked potentials by direct cortical stimulation.

Maruta Y, Fujii M, Imoto H, Nomura S, Oka F, Goto H, Shirao S, Yoshikawa K, Yoneda H, Ideguchi M, Suehiro E, Koizumi H, Ishihara H, Kato S, Kajiwara K, Suzuki M.

Clin Neurophysiol. 2012 Jun;123(6):1248-54. doi: 10.1016/j.clinph.2011.09.025. Epub 2011 Nov 21.

PMID:
22104472
17.

Cortical localization of external urethral sphincter activation by transcranial electrical stimulation.

Haghighi SS, Agrawal S.

Electromyogr Clin Neurophysiol. 2006 Nov;46(6):343-8.

PMID:
17147076
18.

Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.

Seo H, Jun SC.

Brain Stimul. 2019 Mar - Apr;12(2):275-289. doi: 10.1016/j.brs.2018.11.004. Epub 2018 Nov 10.

PMID:
30449635
19.

A novel threshold criterion in transcranial motor evoked potentials during surgery for gliomas close to the motor pathway.

Abboud T, Schaper M, Dührsen L, Schwarz C, Schmidt NO, Westphal M, Martens T.

J Neurosurg. 2016 Oct;125(4):795-802. Epub 2016 Jan 22.

PMID:
26799297
20.

Optimum interpulse interval for transcranial electrical train stimulation to elicit motor evoked potentials of maximal amplitude in both upper and lower extremity target muscles.

van Hal C, Hoebink E, Polak HE, Racz I, de Kleuver M, Journee HL.

Clin Neurophysiol. 2013 Oct;124(10):2054-9. doi: 10.1016/j.clinph.2013.04.011. Epub 2013 Jun 2.

PMID:
23735307

Supplemental Content

Support Center