Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 341

1.

Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer.

Zhang S, Chung WC, Xu K.

Oncogene. 2016 May 12;35(19):2485-95. doi: 10.1038/onc.2015.306. Epub 2015 Aug 17.

PMID:
26279302
2.

Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

Hermann PC, Sancho P, Cañamero M, Martinelli P, Madriles F, Michl P, Gress T, de Pascual R, Gandia L, Guerra C, Barbacid M, Wagner M, Vieira CR, Aicher A, Real FX, Sainz B Jr, Heeschen C.

Gastroenterology. 2014 Nov;147(5):1119-33.e4. doi: 10.1053/j.gastro.2014.08.002. Epub 2014 Aug 12.

PMID:
25127677
3.

Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.

He P, Yang JW, Yang VW, Bialkowska AB.

Gastroenterology. 2018 Apr;154(5):1494-1508.e13. doi: 10.1053/j.gastro.2017.12.005. Epub 2017 Dec 15.

PMID:
29248441
4.

Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.

Qiu W, Tang SM, Lee S, Turk AT, Sireci AN, Qiu A, Rose C, Xie C, Kitajewski J, Wen HJ, Crawford HC, Sims PA, Hruban RH, Remotti HE, Su GH.

Gastroenterology. 2016 Jan;150(1):218-228.e12. doi: 10.1053/j.gastro.2015.09.013. Epub 2015 Sep 25.

5.

Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation.

Zhang S, Chung WC, Wu G, Egan SE, Xu K.

Neoplasia. 2014 Feb;16(2):158-67. doi: 10.1593/neo.131870.

6.

Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas.

Vincent DF, Yan KP, Treilleux I, Gay F, Arfi V, Kaniewski B, Marie JC, Lepinasse F, Martel S, Goddard-Leon S, Iovanna JL, Dubus P, Garcia S, Puisieux A, Rimokh R, Bardeesy N, Scoazec JY, Losson R, Bartholin L.

PLoS Genet. 2009 Jul;5(7):e1000575. doi: 10.1371/journal.pgen.1000575. Epub 2009 Jul 24. Erratum in: PLoS Genet. 2009 Aug;5(8). doi: 10.1371/annotation/7941c465-532f-4b42-b541-72d0810943b9. Kaniewsky, Bastien [corrected to Kaniewski, Bastien].

7.

Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling.

De La O JP, Murtaugh LC.

Cell Cycle. 2009 Jun 15;8(12):1860-4. Epub 2009 Jun 15.

8.

The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice.

Martinelli P, Madriles F, Cañamero M, Pau EC, Pozo ND, Guerra C, Real FX.

Gut. 2016 Mar;65(3):476-86. doi: 10.1136/gutjnl-2014-308042. Epub 2015 Jan 16.

PMID:
25596178
9.
10.

Hes1 Controls Exocrine Cell Plasticity and Restricts Development of Pancreatic Ductal Adenocarcinoma in a Mouse Model.

Hidalgo-Sastre A, Brodylo RL, Lubeseder-Martellato C, Sipos B, Steiger K, Lee M, von Figura G, Grünwald B, Zhong S, Trajkovic-Arsic M, Neff F, Schmid RM, Siveke JT.

Am J Pathol. 2016 Nov;186(11):2934-2944. doi: 10.1016/j.ajpath.2016.07.025. Epub 2016 Sep 14.

PMID:
27639167
11.

Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice.

Maniati E, Bossard M, Cook N, Candido JB, Emami-Shahri N, Nedospasov SA, Balkwill FR, Tuveson DA, Hagemann T.

J Clin Invest. 2011 Dec;121(12):4685-99. doi: 10.1172/JCI45797. Epub 2011 Nov 7.

12.

Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells.

Barceló C, Etchin J, Mansour MR, Sanda T, Ginesta MM, Sanchez-Arévalo Lobo VJ, Real FX, Capellà G, Estanyol JM, Jaumot M, Look AT, Agell N.

Gastroenterology. 2014 Oct;147(4):882-892.e8. doi: 10.1053/j.gastro.2014.06.041. Epub 2014 Jul 3.

13.

Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer.

Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA.

Genes Dev. 2006 Nov 15;20(22):3130-46.

14.

Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16.

Chalabi-Dchar M, Cassant-Sourdy S, Duluc C, Fanjul M, Lulka H, Samain R, Roche C, Breibach F, Delisle MB, Poupot M, Dufresne M, Shimaoka T, Yonehara S, Mathonnet M, Pyronnet S, Bousquet C.

Gastroenterology. 2015 Jun;148(7):1452-65. doi: 10.1053/j.gastro.2015.02.009. Epub 2015 Feb 13.

PMID:
25683115
15.

Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice.

Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, Feldmann G, Stoffers DA, Konieczny SF, Leach SD, Maitra A.

Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18913-8. doi: 10.1073/pnas.0810097105. Epub 2008 Nov 21.

16.

KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.

Appleman VA, Ahronian LG, Cai J, Klimstra DS, Lewis BC.

Mol Cancer Res. 2012 Sep;10(9):1228-39. Epub 2012 Aug 7.

17.

CXCR2 signaling regulates KRAS(G¹²D)-induced autocrine growth of pancreatic cancer.

Purohit A, Varney M, Rachagani S, Ouellette MM, Batra SK, Singh RK.

Oncotarget. 2016 Feb 9;7(6):7280-96. doi: 10.18632/oncotarget.6906.

18.

GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation.

Nolan-Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernández-Zapico ME, Hanahan D.

Genes Dev. 2009 Jan 1;23(1):24-36. doi: 10.1101/gad.1753809.

19.

NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.

Chen NM, Singh G, Koenig A, Liou GY, Storz P, Zhang JS, Regul L, Nagarajan S, Kühnemuth B, Johnsen SA, Hebrok M, Siveke J, Billadeau DD, Ellenrieder V, Hessmann E.

Gastroenterology. 2015 May;148(5):1024-1034.e9. doi: 10.1053/j.gastro.2015.01.033. Epub 2015 Jan 23.

20.

YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK-STAT3 Signaling.

Gruber R, Panayiotou R, Nye E, Spencer-Dene B, Stamp G, Behrens A.

Gastroenterology. 2016 Sep;151(3):526-39. doi: 10.1053/j.gastro.2016.05.006. Epub 2016 May 20.

Supplemental Content

Support Center