Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 31

1.
2.

Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin.

Kuehne SA, Dempster AW, Collery MM, Joshi N, Jowett J, Kelly ML, Cave R, Longshaw CM, Minton NP.

J Antimicrob Chemother. 2018 Apr 1;73(4):973-980. doi: 10.1093/jac/dkx486.

3.

Development of Clostridium difficile R20291ΔPaLoc model strains and in vitro methodologies reveals CdtR is required for the production of CDT to cytotoxic levels.

Bilverstone TW, Kinsmore NL, Minton NP, Kuehne SA.

Anaerobe. 2017 Apr;44:51-54. doi: 10.1016/j.anaerobe.2017.01.009. Epub 2017 Jan 17.

4.

Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model.

Studer N, Desharnais L, Beutler M, Brugiroux S, Terrazos MA, Menin L, Schürch CM, McCoy KD, Kuehne SA, Minton NP, Stecher B, Bernier-Latmani R, Hapfelmeier S.

Front Cell Infect Microbiol. 2016 Dec 20;6:191. doi: 10.3389/fcimb.2016.00191. eCollection 2016.

5.

What's a SNP between friends: The influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives.

Collery MM, Kuehne SA, McBride SM, Kelly ML, Monot M, Cockayne A, Dupuy B, Minton NP.

Virulence. 2017 Aug 18;8(6):767-781. doi: 10.1080/21505594.2016.1237333. Epub 2016 Sep 21.

6.

The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia.

Cowardin CA, Buonomo EL, Saleh MM, Wilson MG, Burgess SL, Kuehne SA, Schwan C, Eichhoff AM, Koch-Nolte F, Lyras D, Aktories K, Minton NP, Petri WA Jr.

Nat Microbiol. 2016 Jul 11;1(8):16108. doi: 10.1038/nmicrobiol.2016.108.

7.

Coinfection and Emergence of Rifamycin Resistance during a Recurrent Clostridium difficile Infection.

Stevenson EC, Major GA, Spiller RC, Kuehne SA, Minton NP.

J Clin Microbiol. 2016 Nov;54(11):2689-2694. Epub 2016 Aug 24.

8.

Clostridium difficile Genome Editing Using pyrE Alleles.

Ehsaan M, Kuehne SA, Minton NP.

Methods Mol Biol. 2016;1476:35-52. doi: 10.1007/978-1-4939-6361-4_4.

PMID:
27507332
9.

Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber.

Jafari NV, Kuehne SA, Minton NP, Allan E, Bajaj-Elliott M.

Anaerobe. 2016 Feb;37:96-102. doi: 10.1016/j.anaerobe.2015.12.007. Epub 2015 Dec 19.

PMID:
26708704
10.

Complete Genome Sequence of the Nonpathogenic Soil-Dwelling Bacterium Clostridium sporogenes Strain NCIMB 10696.

Kubiak AM, Poehlein A, Budd P, Kuehne SA, Winzer K, Theys J, Lambin P, Daniel R, Minton NP.

Genome Announc. 2015 Aug 20;3(4). pii: e00942-15. doi: 10.1128/genomeA.00942-15.

11.

The role of flagella in Clostridium difficile pathogenicity.

Stevenson E, Minton NP, Kuehne SA.

Trends Microbiol. 2015 May;23(5):275-82. doi: 10.1016/j.tim.2015.01.004. Epub 2015 Feb 4. Review.

PMID:
25659185
12.

Inflammasome activation contributes to interleukin-23 production in response to Clostridium difficile.

Cowardin CA, Kuehne SA, Buonomo EL, Marie CS, Minton NP, Petri WA Jr.

MBio. 2015 Jan 27;6(1). pii: e02386-14. doi: 10.1128/mBio.02386-14.

13.

Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro.

Wasels F, Kuehne SA, Cartman ST, Spigaglia P, Barbanti F, Minton NP, Mastrantonio P.

Antimicrob Agents Chemother. 2015 Mar;59(3):1794-6. doi: 10.1128/AAC.04503-14. Epub 2014 Dec 22.

14.

Comparison of culture based methods for the isolation of Clostridium difficile from stool samples in a research setting.

Lister M, Stevenson E, Heeg D, Minton NP, Kuehne SA.

Anaerobe. 2014 Aug;28:226-9. doi: 10.1016/j.anaerobe.2014.07.003. Epub 2014 Jul 16.

15.

The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection.

Barketi-Klai A, Monot M, Hoys S, Lambert-Bordes S, Kuehne SA, Minton N, Collignon A, Dupuy B, Kansau I.

PLoS One. 2014 May 19;9(5):e96876. doi: 10.1371/journal.pone.0096876. eCollection 2014.

16.

A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa.

Kulkarni PR, Jia T, Kuehne SA, Kerkering TM, Morris ER, Searle MS, Heeb S, Rao J, Kulkarni RV.

Nucleic Acids Res. 2014 Jun;42(11):6811-25. doi: 10.1093/nar/gku309. Epub 2014 Apr 29.

17.

Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo.

Heap JT, Theys J, Ehsaan M, Kubiak AM, Dubois L, Paesmans K, Van Mellaert L, Knox R, Kuehne SA, Lambin P, Minton NP.

Oncotarget. 2014 Apr 15;5(7):1761-9.

18.

The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain.

Baban ST, Kuehne SA, Barketi-Klai A, Cartman ST, Kelly ML, Hardie KR, Kansau I, Collignon A, Minton NP.

PLoS One. 2013 Sep 23;8(9):e73026. doi: 10.1371/journal.pone.0073026. eCollection 2013.

19.

Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain.

Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP.

J Infect Dis. 2014 Jan 1;209(1):83-6. doi: 10.1093/infdis/jit426. Epub 2013 Aug 9.

20.

Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s).

Jafari NV, Kuehne SA, Bryant CE, Elawad M, Wren BW, Minton NP, Allan E, Bajaj-Elliott M.

PLoS One. 2013 Jul 29;8(7):e69846. doi: 10.1371/journal.pone.0069846. Print 2013.

Supplemental Content

Loading ...
Support Center