Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 26

1.

Improving the reproducibility of the NAP1/B1/027 epidemic strain R20291 in the hamster model of infection.

Kelly ML, Ng YK, Cartman ST, Collery MM, Cockayne A, Minton NP.

Anaerobe. 2016 Jun;39:51-3. doi: 10.1016/j.anaerobe.2016.02.011. Epub 2016 Mar 2.

2.

Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824.

Ehsaan M, Kuit W, Zhang Y, Cartman ST, Heap JT, Winzer K, Minton NP.

Biotechnol Biofuels. 2016 Jan 4;9:4. doi: 10.1186/s13068-015-0410-0. eCollection 2016.

3.

The SOS Response Master Regulator LexA Is Associated with Sporulation, Motility and Biofilm Formation in Clostridium difficile.

Walter BM, Cartman ST, Minton NP, Butala M, Rupnik M.

PLoS One. 2015 Dec 18;10(12):e0144763. doi: 10.1371/journal.pone.0144763. eCollection 2015.

4.

The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid.

Meaney CA, Cartman ST, McClure PJ, Minton NP.

Int J Food Microbiol. 2016 Jan 4;216:25-30. doi: 10.1016/j.ijfoodmicro.2015.08.024. Epub 2015 Sep 3.

PMID:
26386202
5.

Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ.

Meaney CA, Cartman ST, McClure PJ, Minton NP.

Anaerobe. 2015 Aug;34:86-93. doi: 10.1016/j.anaerobe.2015.04.015. Epub 2015 Apr 29.

PMID:
25937262
6.

Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro.

Wasels F, Kuehne SA, Cartman ST, Spigaglia P, Barbanti F, Minton NP, Mastrantonio P.

Antimicrob Agents Chemother. 2015 Mar;59(3):1794-6. doi: 10.1128/AAC.04503-14. Epub 2014 Dec 22.

7.

Mathematical modelling reveals properties of TcdC required for it to be a negative regulator of toxin production in Clostridium difficile.

Jabbari S, Cartman ST, King JR.

J Math Biol. 2015 Mar;70(4):773-804. doi: 10.1007/s00285-014-0780-0. Epub 2014 Apr 1.

8.

The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain.

Baban ST, Kuehne SA, Barketi-Klai A, Cartman ST, Kelly ML, Hardie KR, Kansau I, Collignon A, Minton NP.

PLoS One. 2013 Sep 23;8(9):e73026. doi: 10.1371/journal.pone.0073026. eCollection 2013.

9.

Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain.

Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP.

J Infect Dis. 2014 Jan 1;209(1):83-6. doi: 10.1093/infdis/jit426. Epub 2013 Aug 9.

10.

Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles.

Ng YK, Ehsaan M, Philip S, Collery MM, Janoir C, Collignon A, Cartman ST, Minton NP.

PLoS One. 2013;8(2):e56051. doi: 10.1371/journal.pone.0056051. Epub 2013 Feb 6.

11.

Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production.

Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP.

Appl Environ Microbiol. 2012 Jul;78(13):4683-90. doi: 10.1128/AEM.00249-12. Epub 2012 Apr 20.

12.

Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts.

Heeg D, Burns DA, Cartman ST, Minton NP.

PLoS One. 2012;7(2):e32381. doi: 10.1371/journal.pone.0032381. Epub 2012 Feb 22.

13.

Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker.

Heap JT, Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP.

Nucleic Acids Res. 2012 Apr;40(8):e59. doi: 10.1093/nar/gkr1321. Epub 2012 Jan 18.

14.

Time to consider Clostridium probiotics?

Cartman ST.

Future Microbiol. 2011 Sep;6(9):969-71. doi: 10.2217/fmb.11.86. No abstract available.

15.

Reconsidering the sporulation characteristics of hypervirulent Clostridium difficile BI/NAP1/027.

Burns DA, Heeg D, Cartman ST, Minton NP.

PLoS One. 2011;6(9):e24894. doi: 10.1371/journal.pone.0024894. Epub 2011 Sep 15.

16.

ClosTron-mediated engineering of Clostridium.

Kuehne SA, Heap JT, Cooksley CM, Cartman ST, Minton NP.

Methods Mol Biol. 2011;765:389-407. doi: 10.1007/978-1-61779-197-0_23.

PMID:
21815105
17.

Both, toxin A and toxin B, are important in Clostridium difficile infection.

Kuehne SA, Cartman ST, Minton NP.

Gut Microbes. 2011 Jul-Aug;2(4):252-5. doi: 10.4161/gmic.2.4.16109. Epub 2011 Jul 1. No abstract available.

18.

The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains.

Dawson LF, Donahue EH, Cartman ST, Barton RH, Bundy J, McNerney R, Minton NP, Wren BW.

BMC Microbiol. 2011 Apr 28;11:86. doi: 10.1186/1471-2180-11-86.

19.

The role of toxin A and toxin B in Clostridium difficile infection.

Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP.

Nature. 2010 Oct 7;467(7316):711-3. doi: 10.1038/nature09397. Epub 2010 Sep 15.

20.

ClosTron-targeted mutagenesis.

Heap JT, Cartman ST, Kuehne SA, Cooksley C, Minton NP.

Methods Mol Biol. 2010;646:165-82. doi: 10.1007/978-1-60327-365-7_11.

PMID:
20597009

Supplemental Content

Loading ...
Support Center