Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Base flipping in open complex formation at bacterial promoters.

Karpen ME, deHaseth PL.

Biomolecules. 2015 Apr 28;5(2):668-78. doi: 10.3390/biom5020668. Review.

2.

Control of gene expression at a bacterial leader RNA, the agn43 gene encoding outer membrane protein Ag43 of Escherichia coli.

Wallecha A, Oreh H, van der Woude MW, deHaseth PL.

J Bacteriol. 2014 Aug;196(15):2728-35. doi: 10.1128/JB.01680-14. Epub 2014 May 16.

3.

Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis.

Saecker RM, Record MT Jr, Dehaseth PL.

J Mol Biol. 2011 Oct 7;412(5):754-71. doi: 10.1016/j.jmb.2011.01.018. Epub 2011 Mar 1.

4.

Conformational flexibility of sigma(70) in anti-terminator loading.

DeHaseth PL, Gott JM.

Mol Microbiol. 2010 Feb;75(3):543-6. doi: 10.1111/j.1365-2958.2009.07022.x. Epub 2009 Dec 16.

5.

Reduced capacity of alternative sigmas to melt promoters ensures stringent promoter recognition.

Koo BM, Rhodius VA, Nonaka G, deHaseth PL, Gross CA.

Genes Dev. 2009 Oct 15;23(20):2426-36. doi: 10.1101/gad.1843709.

6.

Evidence for a tyrosine-adenine stacking interaction and for a short-lived open intermediate subsequent to initial binding of Escherichia coli RNA polymerase to promoter DNA.

Schroeder LA, Gries TJ, Saecker RM, Record MT Jr, Harris ME, DeHaseth PL.

J Mol Biol. 2009 Jan 16;385(2):339-49. doi: 10.1016/j.jmb.2008.10.023. Epub 2008 Oct 17.

7.

Threonine 429 of Escherichia coli sigma 70 is a key participant in promoter DNA melting by RNA polymerase.

Schroeder LA, Karpen ME, deHaseth PL.

J Mol Biol. 2008 Feb 8;376(1):153-65. Epub 2007 Nov 28.

12.

Mechanistic differences in promoter DNA melting by Thermus aquaticus and Escherichia coli RNA polymerases.

Schroeder LA, deHaseth PL.

J Biol Chem. 2005 Apr 29;280(17):17422-9. Epub 2005 Feb 24.

13.
14.

Molecular biology. When a part is as good as the whole.

deHaseth PL, Nilsen TW.

Science. 2004 Feb 27;303(5662):1307-8. No abstract available.

PMID:
14988541
15.
16.
17.

RNA polymerase alters the mobility of an A-residue crucial to polymerase-induced melting of promoter DNA.

Tsujikawa L, Strainic MG, Watrob H, Barkley MD, DeHaseth PL.

Biochemistry. 2002 Dec 24;41(51):15334-41.

PMID:
12484772
18.

Interaction of RNA polymerase with forked DNA: evidence for two kinetically significant intermediates on the pathway to the final complex.

Tsujikawa L, Tsodikov OV, deHaseth PL.

Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3493-8. Epub 2002 Mar 12. Erratum in: Proc Natl Acad Sci U S A 2002 Dec 24;99(26):17219.

20.

Green fluorescent protein as a quantitative reporter of relative promoter activity in E. coli.

Lissemore JL, Jankowski JT, Thomas CB, Mascotti DP, deHaseth PL.

Biotechniques. 2000 Jan;28(1):82-4, 86, 88-9.

PMID:
10649775
21.

Promoter interference in a bacteriophage lambda control region: effects of a range of interpromoter distances.

Strainic MG Jr, Sullivan JJ, Collado-Vides J, deHaseth PL.

J Bacteriol. 2000 Jan;182(1):216-20.

22.

Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners.

Helmann JD, deHaseth PL.

Biochemistry. 1999 May 11;38(19):5959-67. Review. No abstract available.

PMID:
10320321
23.

Promoter recognition by Escherichia coli RNA polymerase: effects of the UP element on open complex formation and promoter clearance.

Strainic MG Jr, Sullivan JJ, Velevis A, deHaseth PL.

Biochemistry. 1998 Dec 22;37(51):18074-80.

PMID:
9922176
24.
25.

RNA polymerase-promoter interactions: the comings and goings of RNA polymerase.

deHaseth PL, Zupancic ML, Record MT Jr.

J Bacteriol. 1998 Jun;180(12):3019-25. Review. No abstract available.

26.

Spectroscopic determination of open complex formation at promoters for Escherichia coli RNA polymerase.

Sullivan JJ, Bjornson KP, Sowers LC, deHaseth PL.

Biochemistry. 1997 Jul 1;36(26):8005-12.

PMID:
9201947
29.
30.
31.
32.
34.

Interference by PR-bound RNA polymerase with PRM function in vitro. Modulation by the bacteriophage lambda cI protein.

Hershberger PA, Mita BC, Tripatara A, deHaseth PL.

J Biol Chem. 1993 Apr 25;268(12):8943-8.

37.

Identification of promoter mutants defective in growth-rate-dependent regulation of rRNA transcription in Escherichia coli.

Dickson RR, Gaal T, deBoer HA, deHaseth PL, Gourse RL.

J Bacteriol. 1989 Sep;171(9):4862-70.

38.

Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants.

Gaal T, Barkei J, Dickson RR, deBoer HA, deHaseth PL, Alavi H, Gourse RL.

J Bacteriol. 1989 Sep;171(9):4852-61.

39.
41.

Promoter recognition by Escherichia coli RNA polymerase: effects of base substitutions in the -10 and -35 regions.

Szoke PA, Allen TL, deHaseth PL.

Biochemistry. 1987 Sep 22;26(19):6188-94.

PMID:
2961367
42.
44.
45.

Chemical synthesis and biochemical reactivity of bacteriophage lambda PR promoter.

deHaseth PL, Goldman RA, Cech CL, Caruthers MH.

Nucleic Acids Res. 1983 Feb 11;11(3):773-87.

46.

Chemical synthesis and biological studies on mutated gene-control regions.

Caruthers MH, Beaucage SL, Efcavitch JW, Fisher EF, Goldman RA, deHaseth PL, Mandecki W, Matteucci MD, Rosendahl MS, Stabinsky Y.

Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:411-8. No abstract available.

PMID:
6345060
47.

Pentalysine-deoxyribonucleic acid interactions: a model for the general effects of ion concentrations on the interactions of proteins with nucleic acids.

Lohman TM, deHaseth PL, Record MT Jr.

Biochemistry. 1980 Jul 22;19(15):3522-30. No abstract available.

PMID:
7407056
48.
49.
50.

Interpretation of monovalent and divalent cation effects on the lac repressor-operator interaction.

Record MT Jr, deHaseth PL, Lohman TM.

Biochemistry. 1977 Nov 1;16(22):4791-6.

PMID:
911790

Supplemental Content

Loading ...
Support Center