Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 51

1.

Timing of gene expression in a cell-fate decision system.

Aymoz D, Solé C, Pierre JJ, Schmitt M, de Nadal E, Posas F, Pelet S.

Mol Syst Biol. 2018 Apr 25;14(4):e8024. doi: 10.15252/msb.20178024.

2.

Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic Responses.

Urrios A, Gonzalez-Flo E, Canadell D, de Nadal E, Macia J, Posas F.

ACS Synth Biol. 2018 Apr 20;7(4):1095-1104. doi: 10.1021/acssynbio.7b00463. Epub 2018 Apr 2.

PMID:
29584406
3.

Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII-p38MAPK-pS249/T252RB Pathway.

Yu-Lee LY, Yu G, Lee YC, Lin SC, Pan J, Pan T, Yu KJ, Liu B, Creighton CJ, Rodriguez-Canales J, Villalobos PA, Wistuba II, de Nadal E, Posas F, Gallick GE, Lin SH.

Cancer Res. 2018 Mar 7. doi: 10.1158/0008-5472.CAN-17-1051. [Epub ahead of print]

PMID:
29514796
4.

Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts.

Duch A, Canal B, Barroso SI, García-Rubio M, Seisenbacher G, Aguilera A, de Nadal E, Posas F.

Nat Commun. 2018 Jan 25;9(1):379. doi: 10.1038/s41467-017-02756-x.

5.

Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.

Vázquez-Ibarra A, Subirana L, Ongay-Larios L, Kawasaki L, Rojas-Ortega E, Rodríguez-González M, de Nadal E, Posas F, Coria R.

FEBS J. 2018 Mar;285(6):1079-1096. doi: 10.1111/febs.14385. Epub 2018 Jan 30.

PMID:
29341399
6.

Regulation of transcription elongation in response to osmostress.

Silva A, Cavero S, Begley V, Solé C, Böttcher R, Chávez S, Posas F, de Nadal E.

PLoS Genet. 2017 Nov 20;13(11):e1007090. doi: 10.1371/journal.pgen.1007090. eCollection 2017 Nov.

7.

The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

Martins TS, Pereira C, Canadell D, Vilaça R, Teixeira V, Moradas-Ferreira P, de Nadal E, Posas F, Costa V.

Biochim Biophys Acta. 2018 Jan;1863(1):61-70. doi: 10.1016/j.bbalip.2017.10.001. Epub 2017 Oct 12.

PMID:
29032057
8.

Interaction Dynamics Determine Signaling and Output Pathway Responses.

Stojanovski K, Ferrar T, Benisty H, Uschner F, Delgado J, Jimenez J, Solé C, de Nadal E, Klipp E, Posas F, Serrano L, Kiel C.

Cell Rep. 2017 Apr 4;19(1):136-149. doi: 10.1016/j.celrep.2017.03.029.

9.

Role of the Sln1-phosphorelay pathway in the response to hyperosmotic stress in the yeast Kluyveromyces lactis.

Rodríguez-González M, Kawasaki L, Velázquez-Zavala N, Domínguez-Martín E, Trejo-Medecigo A, Martagón N, Espinoza-Simón E, Vázquez-Ibarra A, Ongay-Larios L, Georgellis D, de Nadal E, Posas F, Coria R.

Mol Microbiol. 2017 Jun;104(5):822-836. doi: 10.1111/mmi.13664. Epub 2017 Mar 28.

PMID:
28295748
10.

An RB insensitive to CDK regulation.

Joaquin M, de Nadal E, Posas F.

Mol Cell Oncol. 2016 Dec 14;4(1):e1268242. doi: 10.1080/23723556.2016.1268242. eCollection 2017.

11.

Evolution of protein phosphorylation across 18 fungal species.

Studer RA, Rodriguez-Mias RA, Haas KM, Hsu JI, Viéitez C, Solé C, Swaney DL, Stanford LB, Liachko I, Böttcher R, Dunham MJ, de Nadal E, Posas F, Beltrao P, Villén J.

Science. 2016 Oct 14;354(6309):229-232.

PMID:
27738172
12.

The N-Terminal Phosphorylation of RB by p38 Bypasses Its Inactivation by CDKs and Prevents Proliferation in Cancer Cells.

Gubern A, Joaquin M, Marquès M, Maseres P, Garcia-Garcia J, Amat R, González-Nuñez D, Oliva B, Real FX, de Nadal E, Posas F.

Mol Cell. 2016 Oct 6;64(1):25-36. doi: 10.1016/j.molcel.2016.08.015. Epub 2016 Sep 15.

13.

A Synthetic Multicellular Memory Device.

Urrios A, Macia J, Manzoni R, Conde N, Bonforti A, de Nadal E, Posas F, Solé R.

ACS Synth Biol. 2016 Aug 19;5(8):862-73. doi: 10.1021/acssynbio.5b00252. Epub 2016 Aug 8.

PMID:
27439436
14.

Synthetic biology: insights into biological computation.

Manzoni R, Urrios A, Velazquez-Garcia S, de Nadal E, Posas F.

Integr Biol (Camb). 2016 Apr 18;8(4):518-32. doi: 10.1039/c5ib00274e. Epub 2016 Apr 13. Review.

PMID:
27074335
15.

Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia.

Macia J, Manzoni R, Conde N, Urrios A, de Nadal E, Solé R, Posas F.

PLoS Comput Biol. 2016 Feb 1;12(2):e1004685. doi: 10.1371/journal.pcbi.1004685. eCollection 2016 Feb.

16.

Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription.

de Nadal E, Posas F.

FEBS J. 2015 Sep;282(17):3275-85. doi: 10.1111/febs.13323. Epub 2015 Jun 10. Review.

17.

H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes.

Nadal-Ribelles M, Mas G, Millán-Zambrano G, Solé C, Ammerer G, Chávez S, Posas F, de Nadal E.

Nucleic Acids Res. 2015 May 26;43(10):4937-49. doi: 10.1093/nar/gkv220. Epub 2015 Mar 26.

18.

Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress.

González-Novo A, Jiménez J, Clotet J, Nadal-Ribelles M, Cavero S, de Nadal E, Posas F.

Mol Cell Biol. 2015 May;35(9):1606-18. doi: 10.1128/MCB.01279-14. Epub 2015 Mar 2.

19.

A novel role for lncRNAs in cell cycle control during stress adaptation.

Solé C, Nadal-Ribelles M, de Nadal E, Posas F.

Curr Genet. 2015 Aug;61(3):299-308. doi: 10.1007/s00294-014-0453-y. Epub 2014 Sep 28. Review.

20.

Control of Cdc28 CDK1 by a stress-induced lncRNA.

Nadal-Ribelles M, Solé C, Xu Z, Steinmetz LM, de Nadal E, Posas F.

Mol Cell. 2014 Feb 20;53(4):549-61. doi: 10.1016/j.molcel.2014.01.006. Epub 2014 Feb 6.

21.

Dealing with transcriptional outbursts during S phase to protect genomic integrity.

Duch A, de Nadal E, Posas F.

J Mol Biol. 2013 Nov 29;425(23):4745-55. doi: 10.1016/j.jmb.2013.08.019. Epub 2013 Sep 7. Review.

22.

The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress.

Regot S, de Nadal E, Rodríguez-Navarro S, González-Novo A, Pérez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F.

J Biol Chem. 2013 Jun 14;288(24):17384-98. doi: 10.1074/jbc.M112.444042. Epub 2013 May 3. Erratum in: J Biol Chem. 2015 Jan 23;290(4):2301.

23.

Coordinated control of replication and transcription by a SAPK protects genomic integrity.

Duch A, Felipe-Abrio I, Barroso S, Yaakov G, García-Rubio M, Aguilera A, de Nadal E, Posas F.

Nature. 2013 Jan 3;493(7430):116-9. doi: 10.1038/nature11675. Epub 2012 Nov 25.

PMID:
23178807
24.

Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling.

Nadal-Ribelles M, Conde N, Flores O, González-Vallinas J, Eyras E, Orozco M, de Nadal E, Posas F.

Genome Biol. 2012 Nov 18;13(11):R106. doi: 10.1186/gb-2012-13-11-r106.

25.

The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms.

Ruiz-Roig C, Noriega N, Duch A, Posas F, de Nadal E.

Mol Biol Cell. 2012 Nov;23(21):4286-96. doi: 10.1091/mbc.E12-04-0289. Epub 2012 Sep 5.

26.

The p38 and Hog1 SAPKs control cell cycle progression in response to environmental stresses.

Duch A, de Nadal E, Posas F.

FEBS Lett. 2012 Aug 31;586(18):2925-31. doi: 10.1016/j.febslet.2012.07.034. Epub 2012 Jul 20. Review.

27.

The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress.

Joaquin M, Gubern A, González-Nuñez D, Josué Ruiz E, Ferreiro I, de Nadal E, Nebreda AR, Posas F.

EMBO J. 2012 Jun 29;31(13):2952-64. doi: 10.1038/emboj.2012.122. Epub 2012 May 8.

28.

Controlling gene expression in response to stress.

de Nadal E, Ammerer G, Posas F.

Nat Rev Genet. 2011 Nov 3;12(12):833-45. doi: 10.1038/nrg3055. Review.

PMID:
22048664
29.

Control of Ubp3 ubiquitin protease activity by the Hog1 SAPK modulates transcription upon osmostress.

Solé C, Nadal-Ribelles M, Kraft C, Peter M, Posas F, de Nadal E.

EMBO J. 2011 Jul 8;30(16):3274-84. doi: 10.1038/emboj.2011.227.

30.

Transient activation of the HOG MAPK pathway regulates bimodal gene expression.

Pelet S, Rudolf F, Nadal-Ribelles M, de Nadal E, Posas F, Peter M.

Science. 2011 May 6;332(6030):732-5. doi: 10.1126/science.1198851.

31.

Elongating under Stress.

de Nadal E, Posas F.

Genet Res Int. 2011;2011:326286. doi: 10.4061/2011/326286. Epub 2011 Sep 7.

32.

Distributed biological computation with multicellular engineered networks.

Regot S, Macia J, Conde N, Furukawa K, Kjellén J, Peeters T, Hohmann S, de Nadal E, Posas F, Solé R.

Nature. 2011 Jan 13;469(7329):207-11. doi: 10.1038/nature09679. Epub 2010 Dec 8.

PMID:
21150900
33.

The Rpd3L HDAC complex is essential for the heat stress response in yeast.

Ruiz-Roig C, Viéitez C, Posas F, de Nadal E.

Mol Microbiol. 2010 May;76(4):1049-62. doi: 10.1111/j.1365-2958.2010.07167.x. Epub 2010 Apr 14.

34.

Multilayered control of gene expression by stress-activated protein kinases.

de Nadal E, Posas F.

EMBO J. 2010 Jan 6;29(1):4-13. doi: 10.1038/emboj.2009.346. Epub 2009 Nov 26. Review.

35.

Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes.

Mas G, de Nadal E, Dechant R, Rodríguez de la Concepción ML, Logie C, Jimeno-González S, Chávez S, Ammerer G, Posas F.

EMBO J. 2009 Feb 18;28(4):326-36. doi: 10.1038/emboj.2008.299. Epub 2009 Jan 15. Erratum in: EMBO J. 2009 Apr 22;28(8):1191.

36.

Mucins, osmosensors in eukaryotic cells?

de Nadal E, Real FX, Posas F.

Trends Cell Biol. 2007 Dec;17(12):571-4. Epub 2007 Nov 5.

PMID:
17981467
37.

Selective requirement for SAGA in Hog1-mediated gene expression depending on the severity of the external osmostress conditions.

Zapater M, Sohrmann M, Peter M, Posas F, de Nadal E.

Mol Cell Biol. 2007 Jun;27(11):3900-10. Epub 2007 Apr 2.

38.

The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress.

Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F.

Mol Cell. 2006 Jul 21;23(2):241-50.

39.

Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity.

Clotet J, Escoté X, Adrover MA, Yaakov G, Garí E, Aldea M, de Nadal E, Posas F.

EMBO J. 2006 Jun 7;25(11):2338-46. Epub 2006 May 11.

40.

The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes.

De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F.

Nature. 2004 Jan 22;427(6972):370-4.

PMID:
14737171
41.

Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II.

Alepuz PM, de Nadal E, Zapater M, Ammerer G, Posas F.

EMBO J. 2003 May 15;22(10):2433-42.

42.
43.

Dealing with osmostress through MAP kinase activation.

de Nadal E, Alepuz PM, Posas F.

EMBO Rep. 2002 Aug;3(8):735-40. Review.

44.

A role for the Ppz Ser/Thr protein phosphatases in the regulation of translation elongation factor 1Balpha.

de Nadal E, Fadden RP, Ruiz A, Haystead T, Ariño J.

J Biol Chem. 2001 May 4;276(18):14829-34. Epub 2001 Feb 5.

45.

Maize protein kinase CK2: regulation and functionality of three beta regulatory subunits.

Riera M, Peracchia G, de Nadal E, Ariño J, Pagès M.

Plant J. 2001 Feb;25(4):365-74.

46.

Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress.

Proft M, Pascual-Ahuir A, de Nadal E, Ariño J, Serrano R, Posas F.

EMBO J. 2001 Mar 1;20(5):1123-33.

47.

Functional analysis of the Neurospora crassa PZL-1 protein phosphatase by expression in budding and fission yeast.

Vissi E, Clotet J, de Nadal E, Barceló A, Bakó E, Gergely P, Dombrádi V, Ariño J.

Yeast. 2001 Jan 30;18(2):115-24.

48.

The transcriptional response of yeast to saline stress.

Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Ariño J.

J Biol Chem. 2000 Jun 9;275(23):17249-55.

49.

Biochemical and genetic analyses of the role of yeast casein kinase 2 in salt tolerance.

de Nadal E, Calero F, Ramos J, Ariño J.

J Bacteriol. 1999 Oct;181(20):6456-62.

50.

The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase.

de Nadal E, Clotet J, Posas F, Serrano R, Gomez N, Ariño J.

Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7357-62.

Supplemental Content

Loading ...
Support Center