Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.

Fontana J, Voje WE, Zalatan JG, Carothers JM.

J Ind Microbiol Biotechnol. 2018 May 8. doi: 10.1007/s10295-018-2039-z. [Epub ahead of print] Review.

PMID:
29740742
2.

Regulated Expression of sgRNAs Tunes CRISPRi in E. coli.

Fontana J, Dong C, Ham JY, Zalatan JG, Carothers JM.

Biotechnol J. 2018 Apr 10. doi: 10.1002/biot.201800069. [Epub ahead of print]

PMID:
29635744
3.

Additive Manufacturing of Catalytically Active Living Materials.

Saha A, Johnston TG, Shafranek RT, Goodman CJ, Zalatan JG, Storti DW, Ganter MA, Nelson A.

ACS Appl Mater Interfaces. 2018 Apr 25;10(16):13373-13380. doi: 10.1021/acsami.8b02719. Epub 2018 Apr 10.

PMID:
29608267
4.

CRISPR-Cas RNA Scaffolds for Transcriptional Programming in Yeast.

Zalatan JG.

Methods Mol Biol. 2017;1632:341-357. doi: 10.1007/978-1-4939-7138-1_22.

PMID:
28730450
5.

Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds.

Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA.

Cell. 2015 Jan 15;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub 2014 Dec 18.

6.
7.

Conformational control of the Ste5 scaffold protein insulates against MAP kinase misactivation.

Zalatan JG, Coyle SM, Rajan S, Sidhu SS, Lim WA.

Science. 2012 Sep 7;337(6099):1218-22. doi: 10.1126/science.1220683. Epub 2012 Aug 9.

8.

Scaffold proteins: hubs for controlling the flow of cellular information.

Good MC, Zalatan JG, Lim WA.

Science. 2011 May 6;332(6030):680-6. doi: 10.1126/science.1198701. Review.

9.

Biological phosphoryl-transfer reactions: understanding mechanism and catalysis.

Lassila JK, Zalatan JG, Herschlag D.

Annu Rev Biochem. 2011;80:669-702. doi: 10.1146/annurev-biochem-060409-092741. Review.

10.

The far reaches of enzymology.

Zalatan JG, Herschlag D.

Nat Chem Biol. 2009 Aug;5(8):516-20. doi: 10.1038/nchembio0809-516. No abstract available.

PMID:
19620986
11.

Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion.

Zalatan JG, Fenn TD, Herschlag D.

J Mol Biol. 2008 Dec 31;384(5):1174-89. doi: 10.1016/j.jmb.2008.09.059. Epub 2008 Oct 2.

12.

Arginine coordination in enzymatic phosphoryl transfer: evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase.

O'Brien PJ, Lassila JK, Fenn TD, Zalatan JG, Herschlag D.

Biochemistry. 2008 Jul 22;47(29):7663-72. doi: 10.1021/bi800545n.

13.

Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.

Zalatan JG, Catrina I, Mitchell R, Grzyska PK, O'brien PJ, Herschlag D, Hengge AC.

J Am Chem Soc. 2007 Aug 8;129(31):9789-98. Epub 2007 Jul 14.

14.

Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.

Catrina I, O'Brien PJ, Purcell J, Nikolic-Hughes I, Zalatan JG, Hengge AC, Herschlag D.

J Am Chem Soc. 2007 May 2;129(17):5760-5. Epub 2007 Apr 6.

15.
16.

Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis.

Zalatan JG, Herschlag D.

J Am Chem Soc. 2006 Feb 1;128(4):1293-303.

Supplemental Content

Loading ...
Support Center