Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 91

1.
2.

Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays.

Salehi-Reyhani A, Gesellchen F, Mampallil D, Wilson R, Reboud J, Ces O, Willison KR, Cooper JM, Klug DR.

Anal Chem. 2015 Feb 17;87(4):2161-9. doi: 10.1021/ac5033758. Epub 2015 Jan 26.

PMID:
25514590
3.

Identification and relative quantification of tyrosine nitration in a model peptide using two-dimensional infrared spectroscopy.

Rezende Valim L, Davies JA, Tveen Jensen K, Guo R, Willison KR, Spickett CM, Pitt AR, Klug DR.

J Phys Chem B. 2014 Nov 13;118(45):12855-64. doi: 10.1021/jp509053q. Epub 2014 Nov 4.

4.

Addressable droplet microarrays for single cell protein analysis.

Salehi-Reyhani A, Burgin E, Ces O, Willison KR, Klug DR.

Analyst. 2014 Nov 7;139(21):5367-74. doi: 10.1039/c4an01208a.

PMID:
25262574
5.

Absolute quantification of protein copy number using a single-molecule-sensitive microarray.

Burgin E, Salehi-Reyhani A, Barclay M, Brown A, Kaplinsky J, Novakova M, Neil MA, Ces O, Willison KR, Klug DR.

Analyst. 2014 Jul 7;139(13):3235-44. doi: 10.1039/c4an00091a.

PMID:
24676423
6.

Quantitative single cell and single molecule proteomics for clinical studies.

Willison KR, Klug DR.

Curr Opin Biotechnol. 2013 Aug;24(4):745-51. doi: 10.1016/j.copbio.2013.06.001. Epub 2013 Jun 28. Review.

PMID:
23810371
7.

Scaling advantages and constraints in miniaturized capture assays for single cell protein analysis.

Salehi-Reyhani A, Sharma S, Burgin E, Barclay M, Cass A, Neil MA, Ces O, Willison KR, Klug DR, Brown A, Novakova M.

Lab Chip. 2013 Jun 7;13(11):2066-74. doi: 10.1039/c3lc41388h. Erratum in: Lab Chip. 2014 Sep 7;14(17):3430. Brown, Aidan and Novakova, Miroslava [Added].

PMID:
23592024
8.

Interactions of subunit CCT3 in the yeast chaperonin CCT/TRiC with Q/N-rich proteins revealed by high-throughput microscopy analysis.

Nadler-Holly M, Breker M, Gruber R, Azia A, Gymrek M, Eisenstein M, Willison KR, Schuldiner M, Horovitz A.

Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18833-8. doi: 10.1073/pnas.1209277109. Epub 2012 Oct 29.

9.

Affinity chromatography and capillary electrophoresis for analysis of the yeast ribosomal proteins.

Goyder MS, Willison KR, Klug DR, Demello AJ, Ces O.

BMB Rep. 2012 Apr;45(4):233-8.

10.

The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins.

Dekker C, Roe SM, McCormack EA, Beuron F, Pearl LH, Willison KR.

EMBO J. 2011 Jun 24;30(15):3078-90. doi: 10.1038/emboj.2011.208.

11.

Structural changes underlying allostery in group II chaperonins.

Willison KR.

Structure. 2011 Jun 8;19(6):754-5. doi: 10.1016/j.str.2011.05.008.

12.

A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection.

Salehi-Reyhani A, Kaplinsky J, Burgin E, Novakova M, deMello AJ, Templer RH, Parker P, Neil MA, Ces O, French P, Willison KR, Klug D.

Lab Chip. 2011 Apr 7;11(7):1256-61. doi: 10.1039/c0lc00613k. Epub 2011 Feb 23.

PMID:
21347466
13.

On the evolutionary origin of the chaperonins.

Dekker C, Willison KR, Taylor WR.

Proteins. 2011 Apr;79(4):1172-92. doi: 10.1002/prot.22952. Epub 2011 Feb 14.

PMID:
21322032
14.

A two-step mechanism for the folding of actin by the yeast cytosolic chaperonin.

Stuart SF, Leatherbarrow RJ, Willison KR.

J Biol Chem. 2011 Jan 7;286(1):178-84. doi: 10.1074/jbc.M110.166256. Epub 2010 Nov 5.

15.

Generation of simplified protein Raman spectra using three-color picosecond coherent anti-stokes Raman spectroscopy.

Donaldson PM, Willison KR, Klug DR.

J Phys Chem B. 2010 Sep 23;114(37):12175-81. doi: 10.1021/jp1061607.

PMID:
20804132
16.

Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes.

Amit M, Weisberg SJ, Nadler-Holly M, McCormack EA, Feldmesser E, Kaganovich D, Willison KR, Horovitz A.

J Mol Biol. 2010 Aug 20;401(3):532-43. doi: 10.1016/j.jmb.2010.06.037. Epub 2010 Jun 25.

PMID:
20600117
17.

Multigene expression of protein complexes by iterative modification of genomic Bacmid DNA.

Noad RJ, Stewart M, Boyce M, Celma CC, Willison KR, Roy P.

BMC Mol Biol. 2009 Sep 2;10:87. doi: 10.1186/1471-2199-10-87.

18.

Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis.

Fournier F, Guo R, Gardner EM, Donaldson PM, Loeffeld C, Gould IR, Willison KR, Klug DR.

Acc Chem Res. 2009 Sep 15;42(9):1322-31. doi: 10.1021/ar900074p. Review.

PMID:
19548660
19.

Yeast phosducin-like protein 2 acts as a stimulatory co-factor for the folding of actin by the chaperonin CCT via a ternary complex.

McCormack EA, Altschuler GM, Dekker C, Filmore H, Willison KR.

J Mol Biol. 2009 Aug 7;391(1):192-206. doi: 10.1016/j.jmb.2009.06.003. Epub 2009 Jun 6.

PMID:
19501098
20.

A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).

Lanigan PM, Ninkovic T, Chan K, de Mello AJ, Willison KR, Klug DR, Templer RH, Neil MA, Ces O.

Lab Chip. 2009 Apr 21;9(8):1096-101. doi: 10.1039/b816857a. Epub 2009 Jan 21.

PMID:
19350091
21.

A single amino acid residue is responsible for species-specific incompatibility between CCT and alpha-actin.

Altschuler GM, Dekker C, McCormack EA, Morris EP, Klug DR, Willison KR.

FEBS Lett. 2009 Feb 18;583(4):782-6. doi: 10.1016/j.febslet.2009.01.031. Epub 2009 Feb 5.

22.

Protein identification and quantification by two-dimensional infrared spectroscopy: implications for an all-optical proteomic platform.

Fournier F, Gardner EM, Kedra DA, Donaldson PM, Guo R, Butcher SA, Gould IR, Willison KR, Klug DR.

Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15352-7. doi: 10.1073/pnas.0805127105. Epub 2008 Oct 1.

23.

Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin.

Altschuler GM, Willison KR.

J R Soc Interface. 2008 Dec 6;5(29):1391-408. doi: 10.1098/rsif.2008.0185. Review.

24.

Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool.

Lanigan PM, Chan K, Ninkovic T, Templer RH, French PM, de Mello AJ, Willison KR, Parker PJ, Neil MA, Ces O, Klug DR.

J R Soc Interface. 2008 Oct 6;5 Suppl 2:S161-8. doi: 10.1098/rsif.2008.0249.focus.

25.

The interaction network of the chaperonin CCT.

Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR.

EMBO J. 2008 Jul 9;27(13):1827-39. doi: 10.1038/emboj.2008.108. Epub 2008 May 29.

26.

ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature-sensitive for growth.

Shimon L, Hynes GM, McCormack EA, Willison KR, Horovitz A.

J Mol Biol. 2008 Mar 21;377(2):469-77. doi: 10.1016/j.jmb.2008.01.011. Epub 2008 Jan 15.

PMID:
18272176
27.

Optical fingerprinting of peptides using two-dimensional infrared spectroscopy: proof of principle.

Fournier F, Gardner EM, Guo R, Donaldson PM, Barter LM, Palmer DJ, Barnett CJ, Willison KR, Gould IR, Klug DR.

Anal Biochem. 2008 Mar 15;374(2):358-65. Epub 2007 Nov 13.

PMID:
18062912
28.

Direct identification and decongestion of Fermi resonances by control of pulse time ordering in two-dimensional IR spectroscopy.

Donaldson PM, Guo R, Fournier F, Gardner EM, Barter LM, Barnett CJ, Gould IR, Klug DR, Palmer DJ, Willison KR.

J Chem Phys. 2007 Sep 21;127(11):114513. Erratum in: J Chem Phys. 2007 Dec 21;127(23):239901.

PMID:
17887863
29.

The inter-ring arrangement of the cytosolic chaperonin CCT.

Martín-Benito J, Grantham J, Boskovic J, Brackley KI, Carrascosa JL, Willison KR, Valpuesta JM.

EMBO Rep. 2007 Mar;8(3):252-7. Epub 2007 Feb 16.

30.

Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells.

Grantham J, Brackley KI, Willison KR.

Exp Cell Res. 2006 Jul 15;312(12):2309-24.

PMID:
16765944
31.

Quantitative actin folding reactions using yeast CCT purified via an internal tag in the CCT3/gamma subunit.

Pappenberger G, McCormack EA, Willison KR.

J Mol Biol. 2006 Jul 7;360(2):484-96. Epub 2006 May 17.

PMID:
16762366
32.

Allosteric regulation of chaperonins.

Horovitz A, Willison KR.

Curr Opin Struct Biol. 2005 Dec;15(6):646-51. Epub 2005 Oct 24. Review.

PMID:
16249079
33.

Unfolding energetics of G-alpha-actin: a discrete intermediate can be re-folded to the native state by CCT.

Altschuler GM, Klug DR, Willison KR.

J Mol Biol. 2005 Oct 21;353(2):385-96.

PMID:
16171816
34.

Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis.

Rivenzon-Segal D, Wolf SG, Shimon L, Willison KR, Horovitz A.

Nat Struct Mol Biol. 2005 Mar;12(3):233-7. Epub 2005 Feb 6.

PMID:
15696173
35.

The substrate recognition mechanisms in chaperonins.

Gómez-Puertas P, Martín-Benito J, Carrascosa JL, Willison KR, Valpuesta JM.

J Mol Recognit. 2004 Mar-Apr;17(2):85-94. Review.

PMID:
15027029
36.

Visualization of DNA-induced conformational changes in the DNA repair kinase DNA-PKcs.

Boskovic J, Rivera-Calzada A, Maman JD, Chacón P, Willison KR, Pearl LH, Llorca O.

EMBO J. 2003 Nov 3;22(21):5875-82.

37.

Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA.

Llorca O, Rivera-Calzada A, Grantham J, Willison KR.

Oncogene. 2003 Jun 19;22(25):3867-74.

PMID:
12813460
38.

Organization on the plasma membrane of the retinitis pigmentosa protein RP2: investigation of association with detergent-resistant membranes and polarized sorting.

Chapple JP, Grayson C, Hardcastle AJ, Bailey TA, Matter K, Adamson P, Graham CH, Willison KR, Cheetham ME.

Biochem J. 2003 Jun 1;372(Pt 2):427-33.

39.

Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition.

Passmore LA, McCormack EA, Au SW, Paul A, Willison KR, Harper JW, Barford D.

EMBO J. 2003 Feb 17;22(4):786-96.

40.

Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3.

Grayson C, Bartolini F, Chapple JP, Willison KR, Bhamidipati A, Lewis SA, Luthert PJ, Hardcastle AJ, Cowan NJ, Cheetham ME.

Hum Mol Genet. 2002 Nov 15;11(24):3065-74.

PMID:
12417528
41.

Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT.

Valpuesta JM, Martín-Benito J, Gómez-Puertas P, Carrascosa JL, Willison KR.

FEBS Lett. 2002 Oct 2;529(1):11-6. Review.

42.

Crystal structure of the CCTgamma apical domain: implications for substrate binding to the eukaryotic cytosolic chaperonin.

Pappenberger G, Wilsher JA, Roe SM, Counsell DJ, Willison KR, Pearl LH.

J Mol Biol. 2002 May 17;318(5):1367-79.

PMID:
12083524
43.

Delineation of the plasma membrane targeting domain of the X-linked retinitis pigmentosa protein RP2.

Chapple JP, Hardcastle AJ, Grayson C, Willison KR, Cheetham ME.

Invest Ophthalmol Vis Sci. 2002 Jun;43(6):2015-20.

PMID:
12037013
44.

In vitro analysis of aminoglycoside therapy for the Arg120stop nonsense mutation in RP2 patients.

Grayson C, Chapple JP, Willison KR, Webster AR, Hardcastle AJ, Cheetham ME.

J Med Genet. 2002 Jan;39(1):62-7. No abstract available.

45.

Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin.

Llorca O, Martín-Benito J, Gómez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM.

J Struct Biol. 2001 Aug;135(2):205-18.

PMID:
11580270
46.

Point mutations in a hinge linking the small and large domains of beta-actin result in trapped folding intermediates bound to cytosolic chaperonin CCT.

McCormack EA, Llorca O, Carrascosa JL, Valpuesta JM, Willison KR.

J Struct Biol. 2001 Aug;135(2):198-204.

PMID:
11580269
48.

The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin.

Llorca O, Martín-Benito J, Grantham J, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM.

EMBO J. 2001 Aug 1;20(15):4065-75.

49.

Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1.

Kafri G, Willison KR, Horovitz A.

Protein Sci. 2001 Feb;10(2):445-9.

50.

Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations.

Llorca O, Martín-Benito J, Ritco-Vonsovici M, Grantham J, Hynes GM, Willison KR, Carrascosa JL, Valpuesta JM.

EMBO J. 2000 Nov 15;19(22):5971-9.

Supplemental Content

Loading ...
Support Center