Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 65

1.

Native Mass Spectrometry Gives Insight into the Allosteric Binding Mechanism of M2 Pyruvate Kinase to Fructose-1,6-Bisphosphate.

Gavriilidou AFM, Holding FP, Mayer D, Coyle JE, Veprintsev DB, Zenobi R.

Biochemistry. 2018 Mar 20;57(11):1685-1689. doi: 10.1021/acs.biochem.7b01270. Epub 2018 Mar 8.

PMID:
29499117
2.

High-throughput mutagenesis using a two-fragment PCR approach.

Heydenreich FM, Miljuš T, Jaussi R, Benoit R, Milić D, Veprintsev DB.

Sci Rep. 2017 Jul 28;7(1):6787. doi: 10.1038/s41598-017-07010-4.

3.

Production and purification of human Hsp90β in Escherichia coli.

Radli M, Veprintsev DB, Rüdiger SGD.

PLoS One. 2017 Jun 26;12(6):e0180047. doi: 10.1371/journal.pone.0180047. eCollection 2017.

4.

A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling.

Beautrait A, Paradis JS, Zimmerman B, Giubilaro J, Nikolajev L, Armando S, Kobayashi H, Yamani L, Namkung Y, Heydenreich FM, Khoury E, Audet M, Roux PP, Veprintsev DB, Laporte SA, Bouvier M.

Nat Commun. 2017 Apr 18;8:15054. doi: 10.1038/ncomms15054.

5.

Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region.

Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG, Schertler GF, Babu MM.

Nature. 2016 Aug 25;536(7617):484-7. Epub 2016 Aug 15.

6.

Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor.

Isogai S, Deupi X, Opitz C, Heydenreich FM, Tsai CJ, Brueckner F, Schertler GF, Veprintsev DB, Grzesiek S.

Nature. 2016 Feb 11;530(7589):237-41. doi: 10.1038/nature16577. Epub 2016 Feb 3.

PMID:
26840483
7.

Probing Gαi1 protein activation at single-amino acid resolution.

Sun D, Flock T, Deupi X, Maeda S, Matkovic M, Mendieta S, Mayer D, Dawson R, Schertler GFX, Madan Babu M, Veprintsev DB.

Nat Struct Mol Biol. 2015 Sep;22(9):686-694. doi: 10.1038/nsmb.3070. Epub 2015 Aug 10.

8.

Universal allosteric mechanism for Gα activation by GPCRs.

Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM.

Nature. 2015 Aug 13;524(7564):173-179. doi: 10.1038/nature14663. Epub 2015 Jul 6.

9.

Stabilization of G protein-coupled receptors by point mutations.

Heydenreich FM, Vuckovic Z, Matkovic M, Veprintsev DB.

Front Pharmacol. 2015 Apr 20;6:82. doi: 10.3389/fphar.2015.00082. eCollection 2015. Review.

10.

Large-scale production and protein engineering of G protein-coupled receptors for structural studies.

Milić D, Veprintsev DB.

Front Pharmacol. 2015 Mar 31;6:66. doi: 10.3389/fphar.2015.00066. eCollection 2015. Review.

11.

Structure of AMP-PNP-bound BtuCD and mechanism of ATP-powered vitamin B12 transport by BtuCD-F.

Korkhov VM, Mireku SA, Veprintsev DB, Locher KP.

Nat Struct Mol Biol. 2014 Dec;21(12):1097-9. doi: 10.1038/nsmb.2918. Epub 2014 Nov 17.

PMID:
25402482
12.

Crystallization scale preparation of a stable GPCR signaling complex between constitutively active rhodopsin and G-protein.

Maeda S, Sun D, Singhal A, Foggetta M, Schmid G, Standfuss J, Hennig M, Dawson RJ, Veprintsev DB, Schertler GF.

PLoS One. 2014 Jun 30;9(6):e98714. doi: 10.1371/journal.pone.0098714. eCollection 2014.

13.

Hsp90-Tau complex reveals molecular basis for specificity in chaperone action.

Karagöz GE, Duarte AM, Akoury E, Ippel H, Biernat J, Morán Luengo T, Radli M, Didenko T, Nordhues BA, Veprintsev DB, Dickey CA, Mandelkow E, Zweckstetter M, Boelens R, Madl T, Rüdiger SG.

Cell. 2014 Feb 27;156(5):963-74. doi: 10.1016/j.cell.2014.01.037.

14.

AAscan, PCRdesign and MutantChecker: a suite of programs for primer design and sequence analysis for high-throughput scanning mutagenesis.

Sun D, Ostermaier MK, Heydenreich FM, Mayer D, Jaussi R, Standfuss J, Veprintsev DB.

PLoS One. 2013 Oct 30;8(10):e78878. doi: 10.1371/journal.pone.0078878. eCollection 2013.

15.

Bin2 is a membrane sculpting N-BAR protein that influences leucocyte podosomes, motility and phagocytosis.

Sánchez-Barrena MJ, Vallis Y, Clatworthy MR, Doherty GJ, Veprintsev DB, Evans PR, McMahon HT.

PLoS One. 2012;7(12):e52401. doi: 10.1371/journal.pone.0052401. Epub 2012 Dec 20. Erratum in: PLoS One. 2013;8(8). doi:10.1371/annotation/3bdc487b-5e25-4cd7-a354-b2952eec943d.

16.

Molecular basis for modulation of the p53 target selectivity by KLF4.

Brandt T, Townsley FM, Teufel DP, Freund SM, Veprintsev DB.

PLoS One. 2012;7(10):e48252. doi: 10.1371/journal.pone.0048252. Epub 2012 Oct 30.

17.

Stability of p53 homologs.

Brandt T, Kaar JL, Fersht AR, Veprintsev DB.

PLoS One. 2012;7(10):e47889. doi: 10.1371/journal.pone.0047889. Epub 2012 Oct 24.

18.

Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2.

Vogel SM, Bauer MR, Joerger AC, Wilcken R, Brandt T, Veprintsev DB, Rutherford TJ, Fersht AR, Boeckler FM.

Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16906-10. doi: 10.1073/pnas.1215060109. Epub 2012 Oct 3.

19.

An intrinsically labile α-helix abutting the BCL9-binding site of β-catenin is required for its inhibition by carnosic acid.

de la Roche M, Rutherford TJ, Gupta D, Veprintsev DB, Saxty B, Freund SM, Bienz M.

Nat Commun. 2012 Feb 21;3:680. doi: 10.1038/ncomms1680.

20.

Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration.

Arbely E, Natan E, Brandt T, Allen MD, Veprintsev DB, Robinson CV, Chin JW, Joerger AC, Fersht AR.

Proc Natl Acad Sci U S A. 2011 May 17;108(20):8251-6. doi: 10.1073/pnas.1105028108. Epub 2011 Apr 27.

21.

Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers.

Rossmann M, Sukumaran M, Penn AC, Veprintsev DB, Babu MM, Greger IH.

EMBO J. 2011 Mar 2;30(5):959-71. doi: 10.1038/emboj.2011.16. Epub 2011 Feb 11.

22.

Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA.

Melero R, Rajagopalan S, Lázaro M, Joerger AC, Brandt T, Veprintsev DB, Lasso G, Gil D, Scheres SH, Carazo JM, Fersht AR, Valle M.

Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):557-62. doi: 10.1073/pnas.1015520107. Epub 2010 Dec 22.

23.

Features critical for membrane binding revealed by DivIVA crystal structure.

Oliva MA, Halbedel S, Freund SM, Dutow P, Leonard TA, Veprintsev DB, Hamoen LW, Löwe J.

EMBO J. 2010 Jun 16;29(12):1988-2001. doi: 10.1038/emboj.2010.99. Epub 2010 May 25.

24.

Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73.

van Dieck J, Brandt T, Teufel DP, Veprintsev DB, Joerger AC, Fersht AR.

Oncogene. 2010 Apr 8;29(14):2024-35. doi: 10.1038/onc.2009.490. Epub 2010 Feb 8.

PMID:
20140014
25.

Conservation of DNA-binding specificity and oligomerisation properties within the p53 family.

Brandt T, Petrovich M, Joerger AC, Veprintsev DB.

BMC Genomics. 2009 Dec 23;10:628. doi: 10.1186/1471-2164-10-628.

26.

Structural evolution of p53, p63, and p73: implication for heterotetramer formation.

Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV, Fersht AR.

Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17705-10. doi: 10.1073/pnas.0905867106. Epub 2009 Oct 7.

27.

PRIMA-1 reactivates mutant p53 by covalent binding to the core domain.

Lambert JM, Gorzov P, Veprintsev DB, Söderqvist M, Segerbäck D, Bergman J, Fersht AR, Hainaut P, Wiman KG, Bykov VJ.

Cancer Cell. 2009 May 5;15(5):376-88. doi: 10.1016/j.ccr.2009.03.003.

28.

Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers.

van Dieck J, Fernandez-Fernandez MR, Veprintsev DB, Fersht AR.

J Biol Chem. 2009 May 15;284(20):13804-11. doi: 10.1074/jbc.M901351200. Epub 2009 Mar 18.

29.

Effects of CpG methylation on recognition of DNA by the tumour suppressor p53.

Petrovich M, Veprintsev DB.

J Mol Biol. 2009 Feb 13;386(1):72-80. doi: 10.1016/j.jmb.2008.11.054. Epub 2008 Dec 6.

30.

14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers.

Rajagopalan S, Jaulent AM, Wells M, Veprintsev DB, Fersht AR.

Nucleic Acids Res. 2008 Oct;36(18):5983-91. doi: 10.1093/nar/gkn598. Epub 2008 Sep 23.

31.

Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24.

Ghazi-Tabatabai S, Saksena S, Short JM, Pobbati AV, Veprintsev DB, Crowther RA, Emr SD, Egelman EH, Williams RL.

Structure. 2008 Sep 10;16(9):1345-56. doi: 10.1016/j.str.2008.06.010.

32.

Targeted rescue of a destabilized mutant of p53 by an in silico screened drug.

Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR.

Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10360-5. doi: 10.1073/pnas.0805326105. Epub 2008 Jul 23.

33.

The novel p53 isoform "delta p53" is a misfolded protein and does not bind the p21 promoter site.

García-Alai MM, Tidow H, Natan E, Townsley FM, Veprintsev DB, Fersht AR.

Protein Sci. 2008 Oct;17(10):1671-8. doi: 10.1110/ps.036996.108. Epub 2008 Jul 11.

34.

Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA.

Veprintsev DB, Fersht AR.

Nucleic Acids Res. 2008 Mar;36(5):1589-98. doi: 10.1093/nar/gkm1040. Epub 2008 Jan 30.

35.

Structural studies of phosphoinositide 3-kinase-dependent traffic to multivesicular bodies.

Gill DJ, Teo H, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL.

Biochem Soc Symp. 2007;(74):47-57. Review.

PMID:
17233579
36.

Structural insight into the ESCRT-I/-II link and its role in MVB trafficking.

Gill DJ, Teo H, Sun J, Perisic O, Veprintsev DB, Emr SD, Williams RL.

EMBO J. 2007 Jan 24;26(2):600-12. Epub 2007 Jan 11.

37.

Effects of oncogenic mutations and DNA response elements on the binding of p53 to p53-binding protein 2 (53BP2).

Tidow H, Veprintsev DB, Freund SM, Fersht AR.

J Biol Chem. 2006 Oct 27;281(43):32526-33. Epub 2006 Aug 2.

38.

ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes.

Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL.

Cell. 2006 Apr 7;125(1):99-111.

39.

Core domain interactions in full-length p53 in solution.

Veprintsev DB, Freund SM, Andreeva A, Rutledge SE, Tidow H, Cañadillas JM, Blair CM, Fersht AR.

Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2115-9. Epub 2006 Feb 6.

40.

Human full-length Securin is a natively unfolded protein.

Sánchez-Puig N, Veprintsev DB, Fersht AR.

Protein Sci. 2005 Jun;14(6):1410-8.

41.

Modulation of binding of DNA to the C-terminal domain of p53 by acetylation.

Friedler A, Veprintsev DB, Freund SM, von Glos KI, Fersht AR.

Structure. 2005 Apr;13(4):629-36.

42.

Comparative binding of p53 to its promoter and DNA recognition elements.

Weinberg RL, Veprintsev DB, Bycroft M, Fersht AR.

J Mol Biol. 2005 May 6;348(3):589-96.

PMID:
15826656
43.

Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor.

Fernandez-Fernandez MR, Veprintsev DB, Fersht AR.

Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4735-40. Epub 2005 Mar 21.

44.

Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations.

Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR.

J Biol Chem. 2005 Apr 22;280(16):16030-7. Epub 2005 Feb 9.

45.

Binding of natively unfolded HIF-1alpha ODD domain to p53.

Sánchez-Puig N, Veprintsev DB, Fersht AR.

Mol Cell. 2005 Jan 7;17(1):11-21.

46.

Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53.

Friedler A, Veprintsev DB, Rutherford T, von Glos KI, Fersht AR.

J Biol Chem. 2005 Mar 4;280(9):8051-9. Epub 2004 Dec 20.

47.

Structure of a human inositol 1,4,5-trisphosphate 3-kinase: substrate binding reveals why it is not a phosphoinositide 3-kinase.

González B, Schell MJ, Letcher AJ, Veprintsev DB, Irvine RF, Williams RL.

Mol Cell. 2004 Sep 10;15(5):689-701.

48.

Regulation of DNA binding of p53 by its C-terminal domain.

Weinberg RL, Freund SM, Veprintsev DB, Bycroft M, Fersht AR.

J Mol Biol. 2004 Sep 17;342(3):801-11.

PMID:
15342238
49.

Cooperative binding of tetrameric p53 to DNA.

Weinberg RL, Veprintsev DB, Fersht AR.

J Mol Biol. 2004 Aug 27;341(5):1145-59.

PMID:
15321712
50.

Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins.

Teo H, Veprintsev DB, Williams RL.

J Biol Chem. 2004 Jul 2;279(27):28689-96. Epub 2004 Mar 24.

Supplemental Content

Loading ...
Support Center