Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 60


Simvastatin activates single skeletal RyR1 channels but exerts more complex regulation of the cardiac RyR2 isoform.

Venturi E, Lindsay C, Lotteau S, Yang Z, Steer E, Witschas K, Wilson AD, Wickens JR, Russell AJ, Steele D, Calaghan S, Sitsapesan R.

Br J Pharmacol. 2018 Mar;175(6):938-952. doi: 10.1111/bph.14136. Epub 2018 Feb 5.


Synthesis of the Ca2+-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in β-adrenoceptor signaling.

Lin WK, Bolton EL, Cortopassi WA, Wang Y, O'Brien F, Maciejewska M, Jacobson MP, Garnham C, Ruas M, Parrington J, Lei M, Sitsapesan R, Galione A, Terrar DA.

J Biol Chem. 2017 Aug 11;292(32):13243-13257. doi: 10.1074/jbc.M117.789347. Epub 2017 May 24.


Dampened activity of ryanodine receptor channels in mutant skeletal muscle lacking TRIC-A.

El-Ajouz S, Venturi E, Witschas K, Beech M, Wilson AD, Lindsay C, Eberhardt D, O'Brien F, Iida T, Nishi M, Takeshima H, Sitsapesan R.

J Physiol. 2017 Jul 15;595(14):4769-4784. doi: 10.1113/JP273550. Epub 2017 May 23.


Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2).

Grieben M, Pike AC, Shintre CA, Venturi E, El-Ajouz S, Tessitore A, Shrestha L, Mukhopadhyay S, Mahajan P, Chalk R, Burgess-Brown NA, Sitsapesan R, Huiskonen JT, Carpenter EP.

Nat Struct Mol Biol. 2017 Feb;24(2):114-122. doi: 10.1038/nsmb.3343. Epub 2016 Dec 19.


Exploring the biophysical evidence that mammalian two-pore channels are NAADP-activated calcium-permeable channels.

Pitt SJ, Reilly-O'Donnell B, Sitsapesan R.

J Physiol. 2016 Aug 1;594(15):4171-9. doi: 10.1113/JP270936. Epub 2016 Mar 31. Review.


New and notable ion-channels in the sarcoplasmic/endoplasmic reticulum: do they support the process of intracellular Ca²⁺ release?

Takeshima H, Venturi E, Sitsapesan R.

J Physiol. 2015 Aug 1;593(15):3241-51. doi: 10.1113/jphysiol.2014.281881. Epub 2014 Nov 17. Review.


A new look at structures and mechanisms regulating endoplasmic/sarcoplasmic reticulum Ca(2+) release in health and disease.

Sitsapesan R.

J Physiol. 2015 Aug 1;593(15):3239-40. doi: 10.1113/jphysiol.2014.281907. No abstract available.


Is there something fishy about the regulation of the ryanodine receptor in the fish heart?

Shiels HA, Sitsapesan R.

Exp Physiol. 2015 Dec;100(12):1412-20. doi: 10.1113/EP085136. Epub 2015 Aug 16. Review.


Subconductance gating and voltage sensitivity of sarcoplasmic reticulum K(+) channels: a modeling approach.

Matyjaszkiewicz A, Venturi E, O'Brien F, Iida T, Nishi M, Takeshima H, Tsaneva-Atanasova K, Sitsapesan R.

Biophys J. 2015 Jul 21;109(2):265-76. doi: 10.1016/j.bpj.2015.06.020.


The ryanodine receptor provides high throughput Ca2+-release but is precisely regulated by networks of associated proteins: a focus on proteins relevant to phosphorylation.

O'Brien F, Venturi E, Sitsapesan R.

Biochem Soc Trans. 2015 Jun;43(3):426-33. doi: 10.1042/BST20140297. Review.


Reconstitution of lysosomal ion channels into artificial membranes.

Venturi E, Sitsapesan R.

Methods Cell Biol. 2015;126:217-36. doi: 10.1016/bs.mcb.2014.10.023. Epub 2015 Jan 14.


Reconstituted human TPC1 is a proton-permeable ion channel and is activated by NAADP or Ca2+.

Pitt SJ, Lam AK, Rietdorf K, Galione A, Sitsapesan R.

Sci Signal. 2014 May 20;7(326):ra46. doi: 10.1126/scisignal.2004854.


FKBP12.6 activates RyR1: investigating the amino acid residues critical for channel modulation.

Venturi E, Galfré E, O'Brien F, Pitt SJ, Bellamy S, Sessions RB, Sitsapesan R.

Biophys J. 2014 Feb 18;106(4):824-33. doi: 10.1016/j.bpj.2013.12.041.


The Concise Guide to PHARMACOLOGY 2013/14: overview.

Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, McGrath JC, Catterall WA, Spedding M, Peters JA, Harmar AJ; CGTP Collaborators, Abul-Hasn N, Anderson CM, Anderson CM, Araiksinen MS, Arita M, Arthofer E, Barker EL, Barratt C, Barnes NM, Bathgate R, Beart PM, Belelli D, Bennett AJ, Birdsall NJ, Boison D, Bonner TI, Brailsford L, Bröer S, Brown P, Calo G, Carter WG, Catterall WA, Chan SL, Chao MV, Chiang N, Christopoulos A, Chun JJ, Cidlowski J, Clapham DE, Cockcroft S, Connor MA, Cox HM, Cuthbert A, Dautzenberg FM, Davenport AP, Dawson PA, Dent G, Dijksterhuis JP, Dollery CT, Dolphin AC, Donowitz M, Dubocovich ML, Eiden L, Eidne K, Evans BA, Fabbro D, Fahlke C, Farndale R, Fitzgerald GA, Fong TM, Fowler CJ, Fry JR, Funk CD, Futerman AH, Ganapathy V, Gaisnier B, Gershengorn MA, Goldin A, Goldman ID, Gundlach AL, Hagenbuch B, Hales TG, Hammond JR, Hamon M, Hancox JC, Hauger RL, Hay DL, Hobbs AJ, Hollenberg MD, Holliday ND, Hoyer D, Hynes NA, Inui KI, Ishii S, Jacobson KA, Jarvis GE, Jarvis MF, Jensen R, Jones CE, Jones RL, Kaibuchi K, Kanai Y, Kennedy C, Kerr ID, Khan AA, Klienz MJ, Kukkonen JP, Lapoint JY, Leurs R, Lingueglia E, Lippiat J, Lolait SJ, Lummis SC, Lynch JW, MacEwan D, Maguire JJ, Marshall IL, May JM, McArdle CA, McGrath JC, Michel MC, Millar NS, Miller LJ, Mitolo V, Monk PN, Moore PK, Moorhouse AJ, Mouillac B, Murphy PM, Neubig RR, Neumaier J, Niesler B, Obaidat A, Offermanns S, Ohlstein E, Panaro MA, Parsons S, Pwrtwee RG, Petersen J, Pin JP, Poyner DR, Prigent S, Prossnitz ER, Pyne NJ, Pyne S, Quigley JG, Ramachandran R, Richelson EL, Roberts RE, Roskoski R, Ross RA, Roth M, Rudnick G, Ryan RM, Said SI, Schild L, Sanger GJ, Scholich K, Schousboe A, Schulte G, Schulz S, Serhan CN, Sexton PM, Sibley DR, Siegel JM, Singh G, Sitsapesan R, Smart TG, Smith DM, Soga T, Stahl A, Stewart G, Stoddart LA, Summers RJ, Thorens B, Thwaites DT, Toll L, Traynor JR, Usdin TB, Vandenberg RJ, Villalon C, Vore M, Waldman SA, Ward DT, Willars GB, Wonnacott SJ, Wright E, Ye RD, Yonezawa A, Zimmermann M.

Br J Pharmacol. 2013 Dec;170(8):1449-58. doi: 10.1111/bph.12444.


TRIC-B channels display labile gating: evidence from the TRIC-A knockout mouse model.

Venturi E, Matyjaszkiewicz A, Pitt SJ, Tsaneva-Atanasova K, Nishi M, Yamazaki D, Takeshima H, Sitsapesan R.

Pflugers Arch. 2013 Aug;465(8):1135-48. doi: 10.1007/s00424-013-1251-y. Epub 2013 Mar 7.


TRIC channels supporting efficient Ca(2+) release from intracellular stores.

Venturi E, Sitsapesan R, Yamazaki D, Takeshima H.

Pflugers Arch. 2013 Feb;465(2):187-95. doi: 10.1007/s00424-012-1197-5. Epub 2012 Dec 15. Review.


FKBP12 activates the cardiac ryanodine receptor Ca2+-release channel and is antagonised by FKBP12.6.

Galfré E, Pitt SJ, Venturi E, Sitsapesan M, Zaccai NR, Tsaneva-Atanasova K, O'Neill S, Sitsapesan R.

PLoS One. 2012;7(2):e31956. doi: 10.1371/journal.pone.0031956. Epub 2012 Feb 21.


Mitsugumin 23 forms a massive bowl-shaped assembly and cation-conducting channel.

Venturi E, Mio K, Nishi M, Ogura T, Moriya T, Pitt SJ, Okuda K, Kakizawa S, Sitsapesan R, Sato C, Takeshima H.

Biochemistry. 2011 Apr 5;50(13):2623-32. doi: 10.1021/bi1019447. Epub 2011 Mar 7.


Ca²+-dependent phosphorylation of RyR2 can uncouple channel gating from direct cytosolic Ca²+ regulation.

Carter S, Pitt SJ, Colyer J, Sitsapesan R.

J Membr Biol. 2011 Mar;240(1):21-33. doi: 10.1007/s00232-011-9339-9. Epub 2011 Jan 28.


From eggs to hearts: what is the link between cyclic ADP-ribose and ryanodine receptors?

Venturi E, Pitt S, Galfré E, Sitsapesan R.

Cardiovasc Ther. 2012 Apr;30(2):109-16. doi: 10.1111/j.1755-5922.2010.00236.x. Epub 2010 Dec 22. Review.


In pursuit of ryanodine receptors gating in the plasma membrane of RINm5F pancreatic β-cells.

Sitsapesan R.

Islets. 2009 Jul-Aug;1(1):84-6. doi: 10.4161/isl.1.1.9055. No abstract available.


TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+.

Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M, Ganesan A, Gosain R, Churchill GC, Zhu MX, Parrington J, Galione A, Sitsapesan R.

J Biol Chem. 2010 Nov 5;285(45):35039-46. doi: 10.1074/jbc.M110.156927. Epub 2010 Aug 18.


Charade of the SR K+-channel: two ion-channels, TRIC-A and TRIC-B, masquerade as a single K+-channel.

Pitt SJ, Park KH, Nishi M, Urashima T, Aoki S, Yamazaki D, Ma J, Takeshima H, Sitsapesan R.

Biophys J. 2010 Jul 21;99(2):417-26. doi: 10.1016/j.bpj.2010.04.051.


Ca2+-calmodulin increases RyR2 open probability yet reduces ryanoid association with RyR2.

Sigalas C, Mayo-Martin MB, Jane DE, Sitsapesan R.

Biophys J. 2009 Oct 7;97(7):1907-16. doi: 10.1016/j.bpj.2009.07.027.


Diadenosine pentaphosphate is a potent activator of cardiac ryanodine receptors revealing a novel high-affinity binding site for adenine nucleotides.

Song L, Carter SM, Chen Y, Sitsapesan R.

Br J Pharmacol. 2009 Mar;156(5):857-67. doi: 10.1111/j.1476-5381.2008.00071.x. Epub 2009 Feb 13.


Ca(2+)-calmodulin can activate and inactivate cardiac ryanodine receptors.

Sigalas C, Bent S, Kitmitto A, O'Neill S, Sitsapesan R.

Br J Pharmacol. 2009 Mar;156(5):794-806. doi: 10.1111/j.1476-5381.2008.00092.x. Epub 2009 Feb 3.


Single-channel characterization of the rabbit recombinant RyR2 reveals a novel inactivation property of physiological concentrations of ATP.

Stewart R, Song L, Carter SM, Sigalas C, Zaccai NR, Kanamarlapudi V, Bhat MB, Takeshima H, Sitsapesan R.

J Membr Biol. 2008 Mar;222(2):65-77. doi: 10.1007/s00232-008-9102-z. Epub 2008 Apr 17.


Removal of clustered positive charge from dihydropyridine receptor II-III loop peptide augments activation of ryanodine receptors.

Bannister ML, Williams AJ, Sitsapesan R.

Biochem Biophys Res Commun. 2004 Feb 13;314(3):667-74.


Effects of eicosapentaenoic acid on cardiac SR Ca(2+)-release and ryanodine receptor function.

Swan JS, Dibb K, Negretti N, O'Neill SC, Sitsapesan R.

Cardiovasc Res. 2003 Nov 1;60(2):337-46.


Markovian models of low and high activity levels of cardiac ryanodine receptors.

Saftenku E, Williams AJ, Sitsapesan R.

Biophys J. 2001 Jun;80(6):2727-41.


Do inactivation mechanisms rather than adaptation hold the key to understanding ryanodine receptor channel gating?

Sitsapesan R, Williams AJ.

J Gen Physiol. 2000 Dec;116(6):867-72. Review. No abstract available.


AMP is a partial agonist at the sheep cardiac ryanodine receptor.

Ching LL, Williams AJ, Sitsapesan R.

Br J Pharmacol. 1999 May;127(1):161-71.


Evidence for novel caffeine and Ca2+ binding sites on the lobster skeletal ryanodine receptor.

Zhang JJ, Williams AJ, Sitsapesan R.

Br J Pharmacol. 1999 Feb;126(4):1066-74.


Glycolytic pathway intermediates activate cardiac ryanodine receptors.

Kermode H, Chan WM, Williams AJ, Sitsapesan R.

FEBS Lett. 1998 Jul 10;431(1):59-62.


The interactions of ATP, ADP, and inorganic phosphate with the sheep cardiac ryanodine receptor.

Kermode H, Williams AJ, Sitsapesan R.

Biophys J. 1998 Mar;74(3):1296-304.


Regulation of current flow through ryanodine receptors by luminal Ca2+.

Sitsapesan R, Williams AJ.

J Membr Biol. 1997 Oct 1;159(3):179-85. Review. No abstract available.


Modification of the conductance and gating properties of ryanodine receptors by suramin.

Sitsapesan R, Williams AJ.

J Membr Biol. 1996 Sep;153(2):93-103.


Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release.

Sitsapesan R, McGarry SJ, Williams AJ.

Trends Pharmacol Sci. 1995 Nov;16(11):386-91. Review.


Cyclic ADP-ribose and related compounds activate sheep skeletal sarcoplasmic reticulum Ca2+ release channel.

Sitsapesan R, Williams AJ.

Am J Physiol. 1995 May;268(5 Pt 1):C1235-40.


Supplemental Content

Loading ...
Support Center