Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Neuropeptide delivery to synapses by long-range vesicle circulation and sporadic capture.

Wong MY, Zhou C, Shakiryanova D, Lloyd TE, Deitcher DL, Levitan ES.

Cell. 2012 Mar 2;148(5):1029-38. doi: 10.1016/j.cell.2011.12.036.

2.

Differential control of presynaptic CaMKII activation and translocation to active zones.

Shakiryanova D, Morimoto T, Zhou C, Chouhan AK, Sigrist SJ, Nose A, Macleod GT, Deitcher DL, Levitan ES.

J Neurosci. 2011 Jun 22;31(25):9093-100. doi: 10.1523/JNEUROSCI.0550-11.2011.

3.

Synaptic neuropeptide release induced by octopamine without Ca2+ entry into the nerve terminal.

Shakiryanova D, Zettel GM, Gu T, Hewes RS, Levitan ES.

Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4477-81. doi: 10.1073/pnas.1017837108. Epub 2011 Feb 22.

4.

Imaging the Drosophila neuromuscular junction (NMJ): basic optical principles and equipment.

Levitan ES, Shakiryanova D.

Cold Spring Harb Protoc. 2010 Dec 1;2010(12):pdb.top92. doi: 10.1101/pdb.top92.

PMID:
21123433
5.

Imaging neuropeptide release in the Drosophila neuromuscular junction (NMJ).

Levitan ES, Shakiryanova D.

Cold Spring Harb Protoc. 2010 Dec 1;2010(12):pdb.prot5529. doi: 10.1101/pdb.prot5529.

PMID:
21123416
6.

Prolonged presynaptic posttetanic cyclic GMP signaling in Drosophila motoneurons.

Shakiryanova D, Levitan ES.

Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13610-3. doi: 10.1073/pnas.0802131105. Epub 2008 Sep 2.

7.

Presynaptic ryanodine receptor-CamKII signaling is required for activity-dependent capture of transiting vesicles.

Wong MY, Shakiryanova D, Levitan ES.

J Mol Neurosci. 2009 Feb;37(2):146-50. doi: 10.1007/s12031-008-9080-8. Epub 2008 Jul 1.

8.

Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release.

Shakiryanova D, Klose MK, Zhou Y, Gu T, Deitcher DL, Atwood HL, Hewes RS, Levitan ES.

J Neurosci. 2007 Jul 18;27(29):7799-806.

9.

In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction.

Levitan ES, Lanni F, Shakiryanova D.

Nat Protoc. 2007;2(5):1117-25.

PMID:
17546002
10.

Activity-dependent synaptic capture of transiting peptidergic vesicles.

Shakiryanova D, Tully A, Levitan ES.

Nat Neurosci. 2006 Jul;9(7):896-900. Epub 2006 Jun 11.

PMID:
16767091
11.

Nearly neutral secretory vesicles in Drosophila nerve terminals.

Sturman DA, Shakiryanova D, Hewes RS, Deitcher DL, Levitan ES.

Biophys J. 2006 Mar 15;90(6):L45-7. Epub 2006 Jan 20.

12.

Activity-dependent liberation of synaptic neuropeptide vesicles.

Shakiryanova D, Tully A, Hewes RS, Deitcher DL, Levitan ES.

Nat Neurosci. 2005 Feb;8(2):173-8. Epub 2005 Jan 9.

PMID:
15643430
13.

Quantitative analysis of microtubule transport in growing nerve processes.

Ma Y, Shakiryanova D, Vardya I, Popov SV.

Curr Biol. 2004 Apr 20;14(8):725-30.

14.

Effect of phenol on the ion currents of frog nerve ending.

Sitdikova GF, Shakiryanova DM, Zefirov AL.

Mol Chem Neuropathol. 1998 Apr;33(3):259-66.

PMID:
9642678
15.

The effect of acetylcholine and related drugs on currents at the frog motor nerve terminal.

Shakiryanova DM, Zefirov AL, Nikolsky EE, Vyskocil F.

Eur J Pharmacol. 1994 Sep 22;263(1-2):107-14.

PMID:
7821342

Supplemental Content

Loading ...
Support Center