Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors.

Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J.

Sci Total Environ. 2018 Jun 13;642:485-496. doi: 10.1016/j.scitotenv.2018.06.030. [Epub ahead of print] Review.

PMID:
29908507
2.

Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries.

Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, Xu X, Liu G, Seneweera S, Ebi KL, Drewnowski A, Fukagawa NK, Ziska LH.

Sci Adv. 2018 May 23;4(5):eaaq1012. doi: 10.1126/sciadv.aaq1012. eCollection 2018 May.

3.

Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - A review.

Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J.

Water Res. 2018 Sep 1;140:403-414. doi: 10.1016/j.watres.2018.04.034. Epub 2018 Apr 21. Review.

PMID:
29775934
4.

Thiolated arsenic in natural systems: What is current, what is new and what needs to be known.

Herath I, Vithanage M, Seneweera S, Bundschuh J.

Environ Int. 2018 Jun;115:370-386. doi: 10.1016/j.envint.2018.03.027. Epub 2018 May 2. Review.

PMID:
29705693
5.

New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations.

Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S.

Plant Cell Environ. 2018 Jun;41(6):1233-1246. doi: 10.1111/pce.13206. Review.

PMID:
29611206
6.

Manipulating the Phytic Acid Content of Rice Grain Toward Improving Micronutrient Bioavailability.

Perera I, Seneweera S, Hirotsu N.

Rice (N Y). 2018 Jan 11;11(1):4. doi: 10.1186/s12284-018-0200-y. Review.

7.

Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk.

Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S.

Front Physiol. 2017 Aug 8;8:578. doi: 10.3389/fphys.2017.00578. eCollection 2017. Review.

8.

Medical geology in the framework of the sustainable development goals.

Bundschuh J, Maity JP, Mushtaq S, Vithanage M, Seneweera S, Schneider J, Bhattacharya P, Khan NI, Hamawand I, Guilherme LRG, Reardon-Smith K, Parvez F, Morales-Simfors N, Ghaze S, Pudmenzky C, Kouadio L, Chen CY.

Sci Total Environ. 2017 Mar 1;581-582:87-104. doi: 10.1016/j.scitotenv.2016.11.208. Epub 2017 Jan 3. Review.

PMID:
28062106
9.

Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

Fernando N, Manalil S, Florentine SK, Chauhan BS, Seneweera S.

Front Plant Sci. 2016 Jun 22;7:910. doi: 10.3389/fpls.2016.00910. eCollection 2016. Review.

10.

Improving Rice Zinc Biofortification Success Rates Through Genetic and Crop Management Approaches in a Changing Environment.

Nakandalage N, Nicolas M, Norton RM, Hirotsu N, Milham PJ, Seneweera S.

Front Plant Sci. 2016 Jun 6;7:764. doi: 10.3389/fpls.2016.00764. eCollection 2016. Review.

11.

Elevated atmospheric [CO2 ] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves.

Fitzgerald GJ, Tausz M, O'Leary G, Mollah MR, Tausz-Posch S, Seneweera S, Mock I, Löw M, Partington DL, McNeil D, Norton RM.

Glob Chang Biol. 2016 Jun;22(6):2269-84. doi: 10.1111/gcb.13263. Epub 2016 Mar 31.

PMID:
26929390
12.

Impacts of elevated atmospheric CO₂ on nutrient content of important food crops.

Dietterich LH, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, Carlisle E, Fernando N, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Norton R, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Usui Y, Yoshinaga S, Myers SS.

Sci Data. 2015 Jul 21;2:150036. doi: 10.1038/sdata.2015.36. eCollection 2015.

13.

Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics.

Fernando N, Panozzo J, Tausz M, Norton R, Fitzgerald G, Khan A, Seneweera S.

Food Chem. 2015 Mar 1;170:448-54. doi: 10.1016/j.foodchem.2014.07.044. Epub 2014 Jul 14.

PMID:
25306370
14.

Increasing CO2 threatens human nutrition.

Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y.

Nature. 2014 Jun 5;510(7503):139-42. doi: 10.1038/nature13179. Epub 2014 May 7.

15.

Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.

Tausz-Posch S, Norton RM, Seneweera S, Fitzgerald GJ, Tausz M.

Physiol Plant. 2013 Jun;148(2):232-45. doi: 10.1111/j.1399-3054.2012.01701.x. Epub 2012 Oct 22.

PMID:
23035842
16.

Improving yield potential in crops under elevated CO(2): Integrating the photosynthetic and nitrogen utilization efficiencies.

Kant S, Seneweera S, Rodin J, Materne M, Burch D, Rothstein SJ, Spangenberg G.

Front Plant Sci. 2012 Jul 19;3:162. doi: 10.3389/fpls.2012.00162. eCollection 2012.

17.

Content of nutritional elements in sudangrass and ryegrass determined by ICP-AES.

Li WX, Lu JW, Seneweera SP, Wu J, Chen F, Lu JM, Li XK.

Guang Pu Xue Yu Guang Pu Fen Xi. 2011 Sep;31(9):2555-7.

PMID:
22097870
18.
19.

Accelerated Early Growth of Rice at Elevated CO2 (Is It Related to Developmental Changes in the Shoot Apex?).

Jitla DS, Rogers GS, Seneweera SP, Basra AS, Oldfield RJ, Conroy JP.

Plant Physiol. 1997 Sep;115(1):15-22.

20.

Diurnal Regulation of Leaf Blade Elongation in Rice by CO2 (Is it Related to Sucrose-Phosphate Synthase Activity?).

Seneweera SP, Basra AS, Barlow EW, Conroy JP.

Plant Physiol. 1995 Aug;108(4):1471-1477.

Supplemental Content

Loading ...
Support Center