Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 40

1.

LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages.

Härtlova A, Herbst S, Peltier J, Rodgers A, Bilkei-Gorzo O, Fearns A, Dill BD, Lee H, Flynn R, Cowley SA, Davies P, Lewis PA, Ganley IG, Martinez J, Alessi DR, Reith AD, Trost M, Gutierrez MG.

EMBO J. 2018 Jun 15;37(12). pii: e98694. doi: 10.15252/embj.201798694. Epub 2018 May 22.

2.

Discovery of 4-ethoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amines as potent, selective and orally bioavailable LRRK2 inhibitors.

Ding X, Stasi LP, Ho MH, Zhao B, Wang H, Long K, Xu Q, Sang Y, Sun C, Hu H, Yu H, Wan Z, Wang L, Edge C, Liu Q, Li Y, Dong K, Guan X, Tattersall FD, Reith AD, Ren F.

Bioorg Med Chem Lett. 2018 May 15;28(9):1615-1620. doi: 10.1016/j.bmcl.2018.03.045. Epub 2018 Mar 19.

PMID:
29588215
3.

Discovery of 5-substituent-N-arylbenzamide derivatives as potent, selective and orally bioavailable LRRK2 inhibitors.

Ding X, Dai X, Long K, Peng C, Andreotti D, Bamborough P, Eatherton AJ, Edge C, Jandu KS, Nichols PL, Philps OJ, Stasi LP, Wan Z, Xiang JN, Dong K, Dossang P, Ho MH, Li Y, Mensah L, Guan X, Reith AD, Ren F.

Bioorg Med Chem Lett. 2017 Sep 1;27(17):4034-4038. doi: 10.1016/j.bmcl.2017.07.052. Epub 2017 Jul 21.

PMID:
28774425
4.

Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors.

Ito G, Katsemonova K, Tonelli F, Lis P, Baptista MA, Shpiro N, Duddy G, Wilson S, Ho PW, Ho SL, Reith AD, Alessi DR.

Biochem J. 2016 Sep 1;473(17):2671-85. doi: 10.1042/BCJ20160557. Epub 2016 Jul 29.

5.

Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases.

Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M.

Elife. 2016 Jan 29;5. pii: e12813. doi: 10.7554/eLife.12813.

6.

A High-Throughput Screen to Identify LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease Using RapidFire Mass Spectrometry.

Leveridge M, Collier L, Edge C, Hardwicke P, Leavens B, Ratcliffe S, Rees M, Stasi LP, Nadin A, Reith AD.

J Biomol Screen. 2016 Feb;21(2):145-55. doi: 10.1177/1087057115606707. Epub 2015 Sep 24.

PMID:
26403521
7.

MSK1 and MSK2 inhibit lipopolysaccharide-induced prostaglandin production via an interleukin-10 feedback loop.

MacKenzie KF, Van Den Bosch MW, Naqvi S, Elcombe SE, McGuire VA, Reith AD, Blackshear PJ, Dean JL, Arthur JS.

Mol Cell Biol. 2013 Apr;33(7):1456-67. doi: 10.1128/MCB.01690-12. Epub 2013 Feb 4.

8.

GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor.

Reith AD, Bamborough P, Jandu K, Andreotti D, Mensah L, Dossang P, Choi HG, Deng X, Zhang J, Alessi DR, Gray NS.

Bioorg Med Chem Lett. 2012 Sep 1;22(17):5625-9. doi: 10.1016/j.bmcl.2012.06.104. Epub 2012 Jul 7.

9.

Characterization of the cellular action of the MSK inhibitor SB-747651A.

Naqvi S, Macdonald A, McCoy CE, Darragh J, Reith AD, Arthur JS.

Biochem J. 2012 Jan 1;441(1):347-57. doi: 10.1042/BJ20110970.

PMID:
21970321
10.

Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization.

Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, Alessi DR, Nichols RJ.

Biochem J. 2010 Sep 15;430(3):405-13. doi: 10.1042/BJ20100784.

11.

Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease.

Nichols RJ, Dzamko N, Hutti JE, Cantley LC, Deak M, Moran J, Bamborough P, Reith AD, Alessi DR.

Biochem J. 2009 Oct 23;424(1):47-60. doi: 10.1042/BJ20091035.

12.

The identification of potent, selective and CNS penetrant furan-based inhibitors of B-Raf kinase.

Takle AK, Bamford MJ, Davies S, Davis RP, Dean DK, Gaiba A, Irving EA, King FD, Naylor A, Parr CA, Ray AM, Reith AD, Smith BB, Staton PC, Steadman JG, Stean TO, Wilson DM.

Bioorg Med Chem Lett. 2008 Aug 1;18(15):4373-6. doi: 10.1016/j.bmcl.2008.06.070. Epub 2008 Jun 24.

PMID:
18621524
13.

FRAT1, a substrate-specific regulator of glycogen synthase kinase-3 activity, is a cellular substrate of protein kinase A.

Hagen T, Cross DA, Culbert AA, West A, Frame S, Morrice N, Reith AD.

J Biol Chem. 2006 Nov 17;281(46):35021-9. Epub 2006 Sep 18.

14.

The identification of potent and selective imidazole-based inhibitors of B-Raf kinase.

Takle AK, Brown MJ, Davies S, Dean DK, Francis G, Gaiba A, Hird AW, King FD, Lovell PJ, Naylor A, Reith AD, Steadman JG, Wilson DM.

Bioorg Med Chem Lett. 2006 Jan 15;16(2):378-81. Epub 2005 Nov 2.

PMID:
16260133
15.

A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis.

Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J.

Oncogene. 2005 Nov 24;24(53):7859-68.

PMID:
16103880
16.

Mitogen and stress response kinase-1 (MSK1) mediates excitotoxic induced death of hippocampal neurones.

Hughes JP, Staton PC, Wilkinson MG, Strijbos PJ, Skaper SD, Arthur JS, Reith AD.

J Neurochem. 2003 Jul;86(1):25-32.

17.

SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7.

Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS.

Mol Pharmacol. 2002 Jul;62(1):65-74.

18.

Expression and characterization of GSK-3 mutants and their effect on beta-catenin phosphorylation in intact cells.

Hagen T, Di Daniel E, Culbert AA, Reith AD.

J Biol Chem. 2002 Jun 28;277(26):23330-5. Epub 2002 Apr 19.

19.

The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation.

Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJ, Smith DG, Reith AD.

Structure. 2001 Dec;9(12):1143-52.

21.

Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting.

Shigemoto K, Brennan J, Walls E, Watson CJ, Stott D, Rigby PW, Reith AD.

Nucleic Acids Res. 2001 Oct 1;29(19):4079-88.

22.

Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death.

Cross DA, Culbert AA, Chalmers KA, Facci L, Skaper SD, Reith AD.

J Neurochem. 2001 Apr;77(1):94-102.

23.

Nerve injury-associated kinase: a sterile 20-like protein kinase up-regulated in dorsal root ganglia in a rat model of neuropathic pain.

Rausch O, Newton RA, Bingham S, Macdonald R, Case CP, Sanger GJ, Lawson SN, Reith AD.

Neuroscience. 2000;101(3):767-77.

PMID:
11113325
24.

Protein kinase-mediated signaling networks. Regulation and functional characterization.

Reith AD.

Methods Mol Biol. 2001;124:1-20. Review. No abstract available.

PMID:
11100464
25.

Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription.

Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D, Brown MJ, Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC.

Chem Biol. 2000 Oct;7(10):793-803.

26.

Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy.

Yue TL, Gu JL, Wang C, Reith AD, Lee JC, Mirabile RC, Kreutz R, Wang Y, Maleeff B, Parsons AA, Ohlstein EH.

J Biol Chem. 2000 Dec 1;275(48):37895-901.

27.

Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat.

Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA.

Brain Res Mol Brain Res. 2000 Apr 14;77(1):65-75.

PMID:
10814833
28.

A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn.

Ellis C, Kasmi F, Ganju P, Walls E, Panayotou G, Reith AD.

Oncogene. 1996 Apr 18;12(8):1727-36.

PMID:
8622893
29.

Isolation and chromosomal location of Nsk1, a novel murine putative receptor tyrosine kinase.

Reith AD.

Mamm Genome. 1995 Sep;6(9):689. No abstract available.

PMID:
8535092
30.

Cloning and developmental expression of Nsk2, a novel receptor tyrosine kinase implicated in skeletal myogenesis.

Ganju P, Walls E, Brennan J, Reith AD.

Oncogene. 1995 Jul 20;11(2):281-90.

PMID:
7624144
31.

The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development.

Ganju P, Shigemoto K, Brennan J, Entwistle A, Reith AD.

Oncogene. 1994 Jun;9(6):1613-24.

PMID:
8183555
32.

'W' mutant forms of the Fms receptor tyrosine kinase act in a dominant manner to suppress CSF-1 dependent cellular transformation.

Reith AD, Ellis C, Maroc N, Pawson T, Bernstein A, Dubreuil P.

Oncogene. 1993 Jan;8(1):45-53.

PMID:
8380922
33.

SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

McGlade CJ, Ellis C, Reedijk M, Anderson D, Mbamalu G, Reith AD, Panayotou G, End P, Bernstein A, Kazlauskas A, et al.

Mol Cell Biol. 1992 Mar;12(3):991-7.

34.

Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase.

Reith AD, Ellis C, Lyman SD, Anderson DM, Williams DE, Bernstein A, Pawson T.

EMBO J. 1991 Sep;10(9):2451-9.

35.

Molecular basis of mouse developmental mutants.

Reith AD, Bernstein A.

Genes Dev. 1991 Jul;5(7):1115-23. Review. No abstract available.

36.

The murine W/c-kit and Steel loci and the control of hematopoiesis.

Bernstein A, Forrester L, Reith AD, Dubreuil P, Rottapel R.

Semin Hematol. 1991 Apr;28(2):138-42. Review.

PMID:
1715096
37.

W mutant mice with mild or severe developmental defects contain distinct point mutations in the kinase domain of the c-kit receptor.

Reith AD, Rottapel R, Giddens E, Brady C, Forrester L, Bernstein A.

Genes Dev. 1990 Mar;4(3):390-400.

38.

The mouse W/c-kit locus. A mammalian gene that controls the development of three distinct cell lineages.

Dubreuil P, Rottapel R, Reith AD, Forrester L, Bernstein A.

Ann N Y Acad Sci. 1990;599:58-65. No abstract available.

PMID:
1699461
39.

McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning.

Raleigh EA, Murray NE, Revel H, Blumenthal RM, Westaway D, Reith AD, Rigby PW, Elhai J, Hanahan D.

Nucleic Acids Res. 1988 Feb 25;16(4):1563-75. Erratum in: Nucleic Acids Res 1995 Sep 11;23(17):3612.

40.

A retroviral provirus closely associated with the Ren-2 gene of DBA/2 mice.

Burt DW, Reith AD, Brammar WJ.

Nucleic Acids Res. 1984 Nov 26;12(22):8579-93.

Supplemental Content

Loading ...
Support Center