Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth.

Johnson BW, Poulton SW, Goldblatt C.

Nat Commun. 2017 Nov 6;8(1):1316. doi: 10.1038/s41467-017-01453-z.

2.

The onset of widespread marine red beds and the evolution of ferruginous oceans.

Song H, Jiang G, Poulton SW, Wignall PB, Tong J, Song H, An Z, Chu D, Tian L, She Z, Wang C.

Nat Commun. 2017 Aug 30;8(1):399. doi: 10.1038/s41467-017-00502-x.

3.

Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective.

Bowyer F, Wood RA, Poulton SW.

Geobiology. 2017 Jul;15(4):516-551. doi: 10.1111/gbi.12232. Epub 2017 Apr 7.

4.

Biological regulation of atmospheric chemistry en route to planetary oxygenation.

Izon G, Zerkle AL, Williford KH, Farquhar J, Poulton SW, Claire MW.

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2571-E2579. doi: 10.1073/pnas.1618798114. Epub 2017 Mar 13.

5.

Onset of the aerobic nitrogen cycle during the Great Oxidation Event.

Zerkle AL, Poulton SW, Newton RJ, Mettam C, Claire MW, Bekker A, Junium CK.

Nature. 2017 Feb 23;542(7642):465-467. doi: 10.1038/nature20826. Epub 2017 Feb 6.

PMID:
28166535
6.

The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems.

Rush D, Osborne KA, Birgel D, Kappler A, Hirayama H, Peckmann J, Poulton SW, Nickel JC, Mangelsdorf K, Kalyuzhnaya M, Sidgwick FR, Talbot HM.

PLoS One. 2016 Nov 8;11(11):e0165635. doi: 10.1371/journal.pone.0165635. eCollection 2016.

7.

Low-oxygen waters limited habitable space for early animals.

Tostevin R, Wood RA, Shields GA, Poulton SW, Guilbaud R, Bowyer F, Penny AM, He T, Curtis A, Hoffmann KH, Clarkson MO.

Nat Commun. 2016 Sep 23;7:12818. doi: 10.1038/ncomms12818.

8.

Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery.

Clarkson MO, Wood RA, Poulton SW, Richoz S, Newton RJ, Kasemann SA, Bowyer F, Krystyn L.

Nat Commun. 2016 Jul 19;7:12236. doi: 10.1038/ncomms12236.

9.

Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere.

Pogge von Strandmann PA, St├╝eken EE, Elliott T, Poulton SW, Dehler CM, Canfield DE, Catling DC.

Nat Commun. 2015 Dec 18;6:10157. doi: 10.1038/ncomms10157.

10.

Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.

Chen X, Ling HF, Vance D, Shields-Zhou GA, Zhu M, Poulton SW, Och LM, Jiang SY, Li D, Cremonese L, Archer C.

Nat Commun. 2015 May 18;6:7142. doi: 10.1038/ncomms8142.

11.

Ocean acidification and the Permo-Triassic mass extinction.

Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET.

Science. 2015 Apr 10;348(6231):229-32. doi: 10.1126/science.aaa0193.

12.

Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean.

Boyle RA, Clark JR, Poulton SW, Shields-Zhou G, Canfield DE, Lenton TM.

Nat Commun. 2013;4:1533. doi: 10.1038/ncomms2511.

PMID:
23443561
13.

Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes.

Farquhar J, Cliff J, Zerkle AL, Kamyshny A, Poulton SW, Claire M, Adams D, Harms B.

Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17638-43. doi: 10.1073/pnas.1218851110. Epub 2013 Feb 13.

14.

Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.

Frei R, Gaucher C, Poulton SW, Canfield DE.

Nature. 2009 Sep 10;461(7261):250-3. doi: 10.1038/nature08266.

PMID:
19741707
15.

Ferruginous conditions dominated later neoproterozoic deep-water chemistry.

Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T, Strauss H.

Science. 2008 Aug 15;321(5891):949-52. doi: 10.1126/science.1154499. Epub 2008 Jul 17.

16.

Tracing the stepwise oxygenation of the Proterozoic ocean.

Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW, Chu X, Anbar AD.

Nature. 2008 Mar 27;452(7186):456-9. doi: 10.1038/nature06811.

PMID:
18368114
17.

Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life.

Canfield DE, Poulton SW, Narbonne GM.

Science. 2007 Jan 5;315(5808):92-5. Epub 2006 Dec 7.

18.

The transition to a sulphidic ocean approximately 1.84 billion years ago.

Poulton SW, Fralick PW, Canfield DE.

Nature. 2004 Sep 9;431(7005):173-7.

PMID:
15356628
19.

Detection and removal of dissolved hydrogen sulphide in flow-through systems via the sulphidation of hydrous iron (III) oxides.

Poulton SW, Krom MD, van Rijn J, Raiswell R, Bows R.

Environ Technol. 2003 Feb;24(2):217-29.

PMID:
12666791
20.

The use of hydrous iron (III) oxides for the removal of hydrogen sulphide in aqueous systems.

Poulton SW, Krom MD, Van Rijn J, Raiswell R.

Water Res. 2002 Feb;36(4):825-34.

PMID:
11848352

Supplemental Content

Loading ...
Support Center