Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 96


Advances and current challenges in calcium signaling.

Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K.

New Phytol. 2018 Jan 14. doi: 10.1111/nph.14966. [Epub ahead of print] Review.


A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development.

Chiasson DM, Haage K, Sollweck K, Brachmann A, Dietrich P, Parniske M.

Elife. 2017 Sep 21;6. pii: e25012. doi: 10.7554/eLife.25012.


Lipid transfer from plants to arbuscular mycorrhiza fungi.

Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, Röpenack-Lahaye EV, Wang TL, Eisenreich W, Dörmann P, Parniske M, Gutjahr C.

Elife. 2017 Jul 20;6. pii: e29107. doi: 10.7554/eLife.29107.


Cell Biology: Control of Partner Lifetime in a Plant-Fungus Relationship.

Gutjahr C, Parniske M.

Curr Biol. 2017 Jun 5;27(11):R420-R423. doi: 10.1016/j.cub.2017.04.020.


The ERN1 transcription factor gene is a target of the CCaMK/CYCLOPS complex and controls rhizobial infection in Lotus japonicus.

Cerri MR, Wang Q, Stolz P, Folgmann J, Frances L, Katzer K, Li X, Heckmann AB, Wang TL, Downie JA, Klingl A, de Carvalho-Niebel F, Xie F, Parniske M.

New Phytol. 2017 Jul;215(1):323-337. doi: 10.1111/nph.14547. Epub 2017 May 15.


Strawberry Accessions with Reduced Drosophila suzukii Emergence From Fruits.

Gong X, Bräcker L, Bölke N, Plata C, Zeitlmayr S, Metzler D, Olbricht K, Gompel N, Parniske M.

Front Plant Sci. 2016 Dec 21;7:1880. doi: 10.3389/fpls.2016.01880. eCollection 2016.


The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza.

Nagae M, Parniske M, Kawaguchi M, Takeda N.

Plant Signal Behav. 2016 Dec;11(12):e1265723. doi: 10.1080/15592324.2016.1265723.


The Thiamine Biosynthesis Gene THI1 Promotes Nodule Growth and Seed Maturation.

Nagae M, Parniske M, Kawaguchi M, Takeda N.

Plant Physiol. 2016 Nov;172(3):2033-2043. Epub 2016 Oct 4.


A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching.

Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, Gutjahr C.

Curr Biol. 2016 Apr 25;26(8):1126. doi: 10.1016/j.cub.2016.04.021. No abstract available.


A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching.

Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, Gutjahr C.

Curr Biol. 2016 Apr 25;26(8):987-98. doi: 10.1016/j.cub.2016.01.069. Epub 2016 Mar 24.


SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation.

Qiu L, Lin JS, Xu J, Sato S, Parniske M, Wang TL, Downie JA, Xie F.

PLoS Genet. 2015 Oct 30;11(10):e1005623. doi: 10.1371/journal.pgen.1005623. eCollection 2015 Oct.


Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes.

Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M.

Front Plant Sci. 2015 Sep 17;6:667. doi: 10.3389/fpls.2015.00667. eCollection 2015.


Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases.

Ried MK, Antolín-Llovera M, Parniske M.

Elife. 2014 Nov 25;3. doi: 10.7554/eLife.03891.


Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence.

Antolín-Llovera M, Petutsching EK, Ried MK, Lipka V, Nürnberger T, Robatzek S, Parniske M.

New Phytol. 2014 Dec;204(4):791-802. doi: 10.1111/nph.13117. Review.


Symbiosis and pathogenesis: what determines the difference?

Hayashi M, Parniske M.

Curr Opin Plant Biol. 2014 Aug;20:v-vi. doi: 10.1016/j.pbi.2014.07.008. Epub 2014 Jul 30. No abstract available.


A modular plasmid assembly kit for multigene expression, gene silencing and silencing rescue in plants.

Binder A, Lambert J, Morbitzer R, Popp C, Ott T, Lahaye T, Parniske M.

PLoS One. 2014 Feb 13;9(2):e88218. doi: 10.1371/journal.pone.0088218. eCollection 2014.


CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development.

Singh S, Katzer K, Lambert J, Cerri M, Parniske M.

Cell Host Microbe. 2014 Feb 12;15(2):139-52. doi: 10.1016/j.chom.2014.01.011.


Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE ectodomain promotes complex formation with Nod factor receptor 5.

Antolín-Llovera M, Ried MK, Parniske M.

Curr Biol. 2014 Feb 17;24(4):422-7. doi: 10.1016/j.cub.2013.12.053. Epub 2014 Feb 6.


Analysis of the Lotus japonicus nuclear pore NUP107-160 subcomplex reveals pronounced structural plasticity and functional redundancy.

Binder A, Parniske M.

Front Plant Sci. 2014 Jan 22;4:552. doi: 10.3389/fpls.2013.00552. eCollection 2013.


Cell and developmental biology of arbuscular mycorrhiza symbiosis.

Gutjahr C, Parniske M.

Annu Rev Cell Dev Biol. 2013;29:593-617. doi: 10.1146/annurev-cellbio-101512-122413. Review.


CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development.

Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M.

Plant Cell Physiol. 2013 Oct;54(10):1711-23. doi: 10.1093/pcp/pct114. Epub 2013 Aug 7.


Host-related metabolic cues affect colonization strategies of a root endophyte.

Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR, Döhlemann S, von Wirén N, Parniske M, Zuccaro A.

Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13965-70. doi: 10.1073/pnas.1301653110. Epub 2013 Aug 5.


Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development.

Groth M, Kosuta S, Gutjahr C, Haage K, Hardel SL, Schaub M, Brachmann A, Sato S, Tabata S, Findlay K, Wang TL, Parniske M.

Plant J. 2013 Jul;75(1):117-129. doi: 10.1111/tpj.12220. Epub 2013 Jun 10.


The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus.

Credali A, García-Calderón M, Dam S, Perry J, Díaz-Quintana A, Parniske M, Wang TL, Stougaard J, Vega JM, Márquez AJ.

Plant Cell Physiol. 2013 Jan;54(1):107-18. doi: 10.1093/pcp/pcs156. Epub 2012 Nov 18.


RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome.

Strauss T, van Poecke RM, Strauss A, Römer P, Minsavage GV, Singh S, Wolf C, Strauss A, Kim S, Lee HA, Yeom SI, Parniske M, Stall RE, Jones JB, Choi D, Prins M, Lahaye T.

Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19480-5. doi: 10.1073/pnas.1212415109. Epub 2012 Nov 6.


Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus.

De Luis A, Markmann K, Cognat V, Holt DB, Charpentier M, Parniske M, Stougaard J, Voinnet O.

Plant Physiol. 2012 Dec;160(4):2137-54. doi: 10.1104/pp.112.204883. Epub 2012 Oct 15.


Polymorphic infection and organogenesis patterns induced by a Rhizobium leguminosarum isolate from Lotus root nodules are determined by the host genotype.

Gossmann JA, Markmann K, Brachmann A, Rose LE, Parniske M.

New Phytol. 2012 Oct;196(2):561-73. doi: 10.1111/j.1469-8137.2012.04281.x. Epub 2012 Sep 5.


Receptor kinase signaling pathways in plant-microbe interactions.

Antolín-Llovera M, Ried MK, Binder A, Parniske M.

Annu Rev Phytopathol. 2012;50:451-73. doi: 10.1146/annurev-phyto-081211-173002. Review.


Negative regulation of CCaMK is essential for symbiotic infection.

Liao J, Singh S, Hossain MS, Andersen SU, Ross L, Bonetta D, Zhou Y, Sato S, Tabata S, Stougaard J, Szczyglowski K, Parniske M.

Plant J. 2012 Nov;72(4):572-84. doi: 10.1111/j.1365-313X.2012.05098.x. Epub 2012 Sep 13.


Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis.

Singh S, Parniske M.

Curr Opin Plant Biol. 2012 Aug;15(4):444-53. doi: 10.1016/j.pbi.2012.04.002. Epub 2012 Jun 22. Review.


The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling.

Venkateshwaran M, Cosme A, Han L, Banba M, Satyshur KA, Schleiff E, Parniske M, Imaizumi-Anraku H, Ané JM.

Plant Cell. 2012 Jun;24(6):2528-45. doi: 10.1105/tpc.112.098475. Epub 2012 Jun 15.


A set of Lotus japonicus Gifu x Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping.

Sandal N, Jin H, Rodriguez-Navarro DN, Temprano F, Cvitanich C, Brachmann A, Sato S, Kawaguchi M, Tabata S, Parniske M, Ruiz-Sainz JE, Andersen SU, Stougaard J.

DNA Res. 2012;19(4):317-23. doi: 10.1093/dnares/dss014. Epub 2012 May 22.


Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection.

Den Herder G, Yoshida S, Antolín-Llovera M, Ried MK, Parniske M.

Plant Cell. 2012 Apr;24(4):1691-707. doi: 10.1105/tpc.110.082248. Epub 2012 Apr 24.


Functional domain analysis of the Remorin protein LjSYMREM1 in Lotus japonicus.

Tóth K, Stratil TF, Madsen EB, Ye J, Popp C, Antolín-Llovera M, Grossmann C, Jensen ON, Schüssler A, Parniske M, Ott T.

PLoS One. 2012;7(1):e30817. doi: 10.1371/journal.pone.0030817. Epub 2012 Jan 23.


FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics.

Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K.

Plant J. 2012 Jan;69(1):181-92. doi: 10.1111/j.1365-313X.2011.04780.x. Epub 2011 Oct 14.


Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program.

Kosuta S, Held M, Hossain MS, Morieri G, Macgillivary A, Johansen C, Antolín-Llovera M, Parniske M, Oldroyd GE, Downie AJ, Karas B, Szczyglowski K.

Plant J. 2011 Sep;67(5):929-40. doi: 10.1111/j.1365-313X.2011.04645.x. Epub 2011 Jul 1.


Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense.

Serna-Sanz A, Parniske M, Peck SC.

Mol Plant Microbe Interact. 2011 Aug;24(8):932-7. doi: 10.1094/MPMI-09-10-0222.


The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation.

Krusell L, Sato N, Fukuhara I, Koch BE, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J.

Plant J. 2011 Mar;65(6):861-71. doi: 10.1111/j.1365-313X.2010.04474.x. Epub 2011 Jan 31.


Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5.

Madsen EB, Antolín-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen ON, Stougaard J, Parniske M.

Plant J. 2011 Feb;65(3):404-17. doi: 10.1111/j.1365-313X.2010.04431.x. Epub 2010 Dec 15.


Activation of a Lotus japonicus subtilase gene during arbuscular mycorrhiza is dependent on the common symbiosis genes and two cis-active promoter regions.

Takeda N, Haage K, Sato S, Tabata S, Parniske M.

Mol Plant Microbe Interact. 2011 Jun;24(6):662-70. doi: 10.1094/MPMI-09-10-0220.


A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism.

Vriet C, Welham T, Brachmann A, Pike M, Pike J, Perry J, Parniske M, Sato S, Tabata S, Smith AM, Wang TL.

Plant Physiol. 2010 Oct;154(2):643-55. doi: 10.1104/pp.110.161844. Epub 2010 Aug 10.


NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development.

Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M.

Plant Cell. 2010 Jul;22(7):2509-26. doi: 10.1105/tpc.109.069807. Epub 2010 Jul 30.


Identification of candidate genome regions controlling disease resistance in Arachis.

Leal-Bertioli SC, José AC, Alves-Freitas DM, Moretzsohn MC, Guimarães PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Fávero AP, Parniske M, Varshney RK, Bertioli DJ.

BMC Plant Biol. 2009 Aug 22;9:112. doi: 10.1186/1471-2229-9-112.


TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements.

Perry J, Brachmann A, Welham T, Binder A, Charpentier M, Groth M, Haage K, Markmann K, Wang TL, Parniske M.

Plant Physiol. 2009 Nov;151(3):1281-91. doi: 10.1104/pp.109.142190. Epub 2009 Jul 29.


The unbearable naivety of legumes in symbiosis.

Den Herder G, Parniske M.

Curr Opin Plant Biol. 2009 Aug;12(4):491-9. doi: 10.1016/j.pbi.2009.05.010. Epub 2009 Jul 23. Review.


A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus.

Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang TL.

J Exp Bot. 2009;60(12):3353-65. doi: 10.1093/jxb/erp169. Epub 2009 May 27.


Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus.

Takeda N, Sato S, Asamizu E, Tabata S, Parniske M.

Plant J. 2009 Jun;58(5):766-77. doi: 10.1111/j.1365-313X.2009.03824.x. Epub 2009 Feb 10.


The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia.

Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M.

Plant Physiol. 2009 Apr;149(4):1785-96. doi: 10.1104/pp.108.135160. Epub 2009 Jan 28.


Evolution of root endosymbiosis with bacteria: How novel are nodules?

Markmann K, Parniske M.

Trends Plant Sci. 2009 Feb;14(2):77-86. doi: 10.1016/j.tplants.2008.11.009. Epub 2009 Jan 21. Review.


Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis.

Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E, Parniske M.

Plant Cell. 2008 Dec;20(12):3467-79. doi: 10.1105/tpc.108.063255. Epub 2008 Dec 23.

Supplemental Content

Loading ...
Support Center