Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 63

1.

Kv4.2 autism and epilepsy mutation enhances inactivation of closed channels but impairs access to inactivated state after opening.

Lin MA, Cannon SC, Papazian DM.

Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3559-E3568. doi: 10.1073/pnas.1717082115. Epub 2018 Mar 26.

PMID:
29581270
2.

In Vivo Analysis of Potassium Channelopathies: Loose Patch Recording of Purkinje Cell Firing in Living, Awake Zebrafish.

Hsieh JY, Papazian DM.

Methods Mol Biol. 2018;1684:237-252. doi: 10.1007/978-1-4939-7362-0_18.

PMID:
29058196
3.

Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner.

Duarri A, Lin MC, Fokkens MR, Meijer M, Smeets CJ, Nibbeling EA, Boddeke E, Sinke RJ, Kampinga HH, Papazian DM, Verbeek DS.

Cell Mol Life Sci. 2015 Sep;72(17):3387-99. doi: 10.1007/s00018-015-1894-2. Epub 2015 Apr 9.

4.

Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.

Hsieh JY, Ulrich B, Issa FA, Wan J, Papazian DM.

Front Neural Circuits. 2014 Dec 19;8:147. doi: 10.3389/fncir.2014.00147. eCollection 2014.

5.

Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation.

Lee H, Lin MC, Kornblum HI, Papazian DM, Nelson SF.

Hum Mol Genet. 2014 Jul 1;23(13):3481-9. doi: 10.1093/hmg/ddu056. Epub 2014 Feb 5.

6.

Spinocerebellar ataxia type 13 mutation that is associated with disease onset in infancy disrupts axonal pathfinding during neuronal development.

Issa FA, Mock AF, Sagasti A, Papazian DM.

Dis Model Mech. 2012 Nov;5(6):921-9. doi: 10.1242/dmm.010157. Epub 2012 Jun 26.

7.

Altered Kv3.3 channel gating in early-onset spinocerebellar ataxia type 13.

Minassian NA, Lin MC, Papazian DM.

J Physiol. 2012 Apr 1;590(7):1599-614. doi: 10.1113/jphysiol.2012.228205. Epub 2012 Jan 30.

8.

R1 in the Shaker S4 occupies the gating charge transfer center in the resting state.

Lin MC, Hsieh JY, Mock AF, Papazian DM.

J Gen Physiol. 2011 Aug;138(2):155-63. doi: 10.1085/jgp.201110642.

9.

Spinocerebellar ataxia type 13 mutant potassium channel alters neuronal excitability and causes locomotor deficits in zebrafish.

Issa FA, Mazzochi C, Mock AF, Papazian DM.

J Neurosci. 2011 May 4;31(18):6831-41. doi: 10.1523/JNEUROSCI.6572-10.2011.

10.

Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13).

Figueroa KP, Waters MF, Garibyan V, Bird TD, Gomez CM, Ranum LP, Minassian NA, Papazian DM, Pulst SM.

PLoS One. 2011 Mar 29;6(3):e17811. doi: 10.1371/journal.pone.0017811.

11.

Neural circuit activity in freely behaving zebrafish (Danio rerio).

Issa FA, O'Brien G, Kettunen P, Sagasti A, Glanzman DL, Papazian DM.

J Exp Biol. 2011 Mar 15;214(Pt 6):1028-38. doi: 10.1242/jeb.048876.

12.

Functional effects of spinocerebellar ataxia type 13 mutations are conserved in zebrafish Kv3.3 channels.

Mock AF, Richardson JL, Hsieh JY, Rinetti G, Papazian DM.

BMC Neurosci. 2010 Aug 16;11:99. doi: 10.1186/1471-2202-11-99.

13.

Transfer of ion binding site from ether-a-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening.

Lin MC, Abramson J, Papazian DM.

J Gen Physiol. 2010 May;135(5):415-31. doi: 10.1085/jgp.200910320. Epub 2010 Apr 12.

14.

KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients.

Figueroa KP, Minassian NA, Stevanin G, Waters M, Garibyan V, Forlani S, Strzelczyk A, Bürk K, Brice A, Dürr A, Papazian DM, Pulst SM.

Hum Mutat. 2010 Feb;31(2):191-6. doi: 10.1002/humu.21165.

15.

Voltage-dependent conformational changes of KVAP S4 segment in bacterial membrane environment.

Koag MC, Papazian DM.

Channels (Austin). 2009 Sep-Oct;3(5):356-65. Epub 2009 Sep 3.

16.
17.

S0, where is it?

Papazian DM.

J Gen Physiol. 2008 Jun;131(6):531-6. doi: 10.1085/jgp.200810031. Epub 2008 May 12. No abstract available.

18.

Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer.

Richardson J, Blunck R, Ge P, Selvin PR, Bezanilla F, Papazian DM, Correa AM.

Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15865-70. Epub 2006 Oct 16.

19.

Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes.

Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, Mock AF, Evidente VG, Fee DB, Müller U, Dürr A, Brice A, Papazian DM, Pulst SM.

Nat Genet. 2006 Apr;38(4):447-51. Epub 2006 Feb 26.

PMID:
16501573
20.

Optical detection of rate-determining ion-modulated conformational changes of the ether-à-go-go K+ channel voltage sensor.

Bannister JP, Chanda B, Bezanilla F, Papazian DM.

Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18718-23. Epub 2005 Dec 9.

21.

CACNA1A mutations causing episodic and progressive ataxia alter channel trafficking and kinetics.

Wan J, Khanna R, Sandusky M, Papazian DM, Jen JC, Baloh RW.

Neurology. 2005 Jun 28;64(12):2090-7.

PMID:
15985579
22.

Binding site in eag voltage sensor accommodates a variety of ions and is accessible in closed channel.

Silverman WR, Bannister JP, Papazian DM.

Biophys J. 2004 Nov;87(5):3110-21. Epub 2004 Sep 3.

23.
24.

BK channels: the spring between sensor and gate.

Papazian DM.

Neuron. 2004 Jun 10;42(5):699-701.

25.

Transient calnexin interaction confers long-term stability on folded K+ channel protein in the ER.

Khanna R, Lee EJ, Papazian DM.

J Cell Sci. 2004 Jun 15;117(Pt 14):2897-908. Epub 2004 May 25.

26.

Critical assessment of a proposed model of Shaker.

Lainé M, Papazian DM, Roux B.

FEBS Lett. 2004 Apr 30;564(3):257-63. Review.

27.

Atomic proximity between S4 segment and pore domain in Shaker potassium channels.

Lainé M, Lin MC, Bannister JP, Silverman WR, Mock AF, Roux B, Papazian DM.

Neuron. 2003 Jul 31;39(3):467-81.

28.

Structural basis of two-stage voltage-dependent activation in K+ channels.

Silverman WR, Roux B, Papazian DM.

Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2935-40. Epub 2003 Feb 26.

29.

Structural organization of the voltage sensor in voltage-dependent potassium channels.

Papazian DM, Silverman WR, Lin MC, Tiwari-Woodruff SK, Tang CY.

Novartis Found Symp. 2002;245:178-90; discussion 190-2, 261-4. Review.

PMID:
12027007
30.

Loss-of-function EA2 mutations are associated with impaired neuromuscular transmission.

Jen J, Wan J, Graves M, Yu H, Mock AF, Coulin CJ, Kim G, Yue Q, Papazian DM, Baloh RW.

Neurology. 2001 Nov 27;57(10):1843-8.

PMID:
11723274
31.

Glycosylation increases potassium channel stability and surface expression in mammalian cells.

Khanna R, Myers MP, Lainé M, Papazian DM.

J Biol Chem. 2001 Sep 7;276(36):34028-34. Epub 2001 Jun 26.

32.
33.
34.

Voltage-dependent structural interactions in the Shaker K(+) channel.

Tiwari-Woodruff SK, Lin MA, Schulteis CT, Papazian DM.

J Gen Physiol. 2000 Feb;115(2):123-38.

35.

Voltage-dependent activation of ion channels.

Papazian DM, Bezanilla F.

Adv Neurol. 1999;79:481-91. Review. No abstract available.

PMID:
10514836
36.
37.

Potassium channels: some assembly required.

Papazian DM.

Neuron. 1999 May;23(1):7-10. Review. No abstract available.

38.

Subunit folding and assembly steps are interspersed during Shaker potassium channel biogenesis.

Schulteis CT, Nagaya N, Papazian DM.

J Biol Chem. 1998 Oct 2;273(40):26210-7.

39.

Shaker and ether-à-go-go K+ channel subunits fail to coassemble in Xenopus oocytes.

Tang CY, Schulteis CT, Jiménez RM, Papazian DM.

Biophys J. 1998 Sep;75(3):1263-70.

40.

Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits.

Tiwari-Woodruff SK, Schulteis CT, Mock AF, Papazian DM.

Biophys J. 1997 Apr;72(4):1489-500.

41.
42.

Potassium channel alpha and beta subunits assemble in the endoplasmic reticulum.

Nagaya N, Papazian DM.

J Biol Chem. 1997 Jan 31;272(5):3022-7.

43.

Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels.

Schulteis CT, Nagaya N, Papazian DM.

Biochemistry. 1996 Sep 17;35(37):12133-40.

PMID:
8810920
44.

Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel.

Seoh SA, Sigg D, Papazian DM, Bezanilla F.

Neuron. 1996 Jun;16(6):1159-67.

45.

Electrostatic interactions of S4 voltage sensor in Shaker K+ channel.

Papazian DM, Shao XM, Seoh SA, Mock AF, Huang Y, Wainstock DH.

Neuron. 1995 Jun;14(6):1293-301.

46.

Conserved cysteine residues in the shaker K+ channel are not linked by a disulfide bond.

Schulteis CT, John SA, Huang Y, Tang CY, Papazian DM.

Biochemistry. 1995 Feb 7;34(5):1725-33.

PMID:
7849032
47.

Glycosylation of shaker potassium channel protein in insect cell culture and in Xenopus oocytes.

Santacruz-Toloza L, Huang Y, John SA, Papazian DM.

Biochemistry. 1994 May 10;33(18):5607-13.

PMID:
8180185
48.

Purification and reconstitution of functional Shaker K+ channels assayed with a light-driven voltage-control system.

Santacruz-Toloza L, Perozo E, Papazian DM.

Biochemistry. 1994 Feb 15;33(6):1295-9.

PMID:
8312246
49.

S4 mutations alter gating currents of Shaker K channels.

Perozo E, Santacruz-Toloza L, Stefani E, Bezanilla F, Papazian DM.

Biophys J. 1994 Feb;66(2 Pt 1):345-54.

50.

S4 mutations alter the single-channel gating kinetics of Shaker K+ channels.

Shao XM, Papazian DM.

Neuron. 1993 Aug;11(2):343-52.

PMID:
8352942

Supplemental Content

Loading ...
Support Center