Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

An oral administration of a recombinant anti-TNF fusion protein is biologically active in the gut promoting regulatory T cells: Results of a phase I clinical trial using a novel oral anti-TNF alpha-based therapy.

Almon E, Khoury T, Drori A, Gingis-Velitski S, Alon S, Chertkoff R, Mushkat M, Shaaltiel Y, Ilan Y.

J Immunol Methods. 2017 Jul;446:21-29. doi: 10.1016/j.jim.2017.03.023. Epub 2017 Apr 7.

PMID:
28392436
2.

A plant cell-expressed recombinant anti-TNF fusion protein is biologically active in the gut and alleviates immune-mediated hepatitis and colitis.

Ilan Y, Gingis-Velitski S, Ben Ya'aco A, Shabbat Y, Zolotarov L, Almon E, Shaaltiel Y.

Immunobiology. 2017 Mar;222(3):544-551. doi: 10.1016/j.imbio.2016.11.001. Epub 2016 Nov 4.

PMID:
27832933
3.

Oral administration of a non-absorbable plant cell-expressed recombinant anti-TNF fusion protein induces immunomodulatory effects and alleviates nonalcoholic steatohepatitis.

Ilan Y, Ben Ya'acov A, Shabbat Y, Gingis-Velitski S, Almon E, Shaaltiel Y.

World J Gastroenterol. 2016 Oct 21;22(39):8760-8769.

4.

Macrophage-Induced Lymphangiogenesis and Metastasis following Paclitaxel Chemotherapy Is Regulated by VEGFR3.

Alishekevitz D, Gingis-Velitski S, Kaidar-Person O, Gutter-Kapon L, Scherer SD, Raviv Z, Merquiol E, Ben-Nun Y, Miller V, Rachman-Tzemah C, Timaner M, Mumblat Y, Ilan N, Loven D, Hershkovitz D, Satchi-Fainaro R, Blum G, P Sleeman J, Vlodavsky I, Shaked Y.

Cell Rep. 2016 Oct 25;17(5):1344-1356. doi: 10.1016/j.celrep.2016.09.083.

5.

Large-scale production of pharmaceutical proteins in plant cell culture-the Protalix experience.

Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y.

Plant Biotechnol J. 2015 Oct;13(8):1199-208. doi: 10.1111/pbi.12428. Epub 2015 Jun 23. Review.

6.

Plant-based oral delivery of β-glucocerebrosidase as an enzyme replacement therapy for Gaucher's disease.

Shaaltiel Y, Gingis-Velitski S, Tzaban S, Fiks N, Tekoah Y, Aviezer D.

Plant Biotechnol J. 2015 Oct;13(8):1033-40. doi: 10.1111/pbi.12366. Epub 2015 Apr 1.

7.

Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: a process regulated by osteopontin.

Fremder E, Munster M, Aharon A, Miller V, Gingis-Velitski S, Voloshin T, Alishekevitz D, Bril R, Scherer SJ, Loven D, Brenner B, Shaked Y.

Int J Cancer. 2014 Jul 15;135(2):270-81. doi: 10.1002/ijc.28678. Epub 2014 Jan 13.

8.

Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy.

Benayoun L, Schaffer M, Bril R, Gingis-Velitski S, Segal E, Nevelsky A, Satchi-Fainaro R, Shaked Y.

Cancer Biol Ther. 2013 Jan;14(1):64-74. doi: 10.4161/cbt.22630. Epub 2012 Oct 31.

9.

Evaluation of circulating endothelial precursor cells in cancer patients.

Bertolini F, Mancuso P, Benayoun L, Gingis-Velitski S, Shaked Y.

Methods Mol Biol. 2012;904:165-72. doi: 10.1007/978-1-61779-943-3_14.

PMID:
22890931
10.

Tumor-initiating cells of various tumor types exhibit differential angiogenic properties and react differently to antiangiogenic drugs.

Benayoun L, Gingis-Velitski S, Voloshin T, Segal E, Segev R, Munster M, Bril R, Satchi-Fainaro R, Scherer SJ, Shaked Y.

Stem Cells. 2012 Sep;30(9):1831-41. doi: 10.1002/stem.1170.

11.

Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice.

Gingis-Velitski S, Loven D, Benayoun L, Munster M, Bril R, Voloshin T, Alishekevitz D, Bertolini F, Shaked Y.

Cancer Res. 2011 Nov 15;71(22):6986-96. doi: 10.1158/0008-5472.CAN-11-0629. Epub 2011 Oct 6.

12.

G-CSF supplementation with chemotherapy can promote revascularization and subsequent tumor regrowth: prevention by a CXCR4 antagonist.

Voloshin T, Gingis-Velitski S, Bril R, Benayoun L, Munster M, Milsom C, Man S, Kerbel RS, Shaked Y.

Blood. 2011 Sep 22;118(12):3426-35. doi: 10.1182/blood-2010-11-320812. Epub 2011 Jun 17.

13.

The angiogenic profile of colorectal cancer patients following open or laparoscopic colectomy.

Voloshin T, Gingis-Velitski S, Shaked Y.

Cancer Biol Ther. 2010 Oct 1;10(7):686-8. doi: 10.4161/cbt.10.7.13240. Epub 2010 Oct 1. No abstract available.

PMID:
20814248
14.

A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics.

Barash U, Cohen-Kaplan V, Arvatz G, Gingis-Velitski S, Levy-Adam F, Nativ O, Shemesh R, Ayalon-Sofer M, Ilan N, Vlodavsky I.

FASEB J. 2010 Apr;24(4):1239-48. doi: 10.1096/fj.09-147074. Epub 2009 Dec 9.

15.

Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling.

Fux L, Feibish N, Cohen-Kaplan V, Gingis-Velitski S, Feld S, Geffen C, Vlodavsky I, Ilan N.

Cancer Res. 2009 Mar 1;69(5):1758-67. doi: 10.1158/0008-5472.CAN-08-1837. Epub 2009 Feb 24.

16.

Heparanase induces tissue factor pathway inhibitor expression and extracellular accumulation in endothelial and tumor cells.

Nadir Y, Brenner B, Gingis-Velitski S, Levy-Adam F, Ilan N, Zcharia E, Nadir E, Vlodavsky I.

Thromb Haemost. 2008 Jan;99(1):133-41.

PMID:
18217145
17.

Low and high affinity receptors mediate cellular uptake of heparanase.

Ben-Zaken O, Shafat I, Gingis-Velitski S, Bangio H, Kelson IK, Alergand T, Amor Y, Maya RB, Vlodavsky I, Ilan N.

Int J Biochem Cell Biol. 2008;40(3):530-42. Epub 2007 Sep 29.

18.

Heparanase induces Akt phosphorylation via a lipid raft receptor.

Ben-Zaken O, Gingis-Velitski S, Vlodavsky I, Ilan N.

Biochem Biophys Res Commun. 2007 Oct 5;361(4):829-34. Epub 2007 Jul 24.

19.

Anti-heparanase monoclonal antibody enhances heparanase enzymatic activity and facilitates wound healing.

Gingis-Velitski S, Ishai-Michaeli R, Vlodavsky I, Ilan N.

FASEB J. 2007 Dec;21(14):3986-93. Epub 2007 Jul 12.

PMID:
17628014
20.

Spatial and temporal heparanase expression in colon mucosa throughout the adenoma-carcinoma sequence.

Doviner V, Maly B, Kaplan V, Gingis-Velitski S, Ilan N, Vlodavsky I, Sherman Y.

Mod Pathol. 2006 Jun;19(6):878-88.

21.

Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans.

Gingis-Velitski S, Zetser A, Kaplan V, Ben-Zaken O, Cohen E, Levy-Adam F, Bashenko Y, Flugelman MY, Vlodavsky I, Ilan N.

J Biol Chem. 2004 Oct 15;279(42):44084-92. Epub 2004 Jul 29.

22.

Processing and activation of latent heparanase occurs in lysosomes.

Zetser A, Levy-Adam F, Kaplan V, Gingis-Velitski S, Bashenko Y, Schubert S, Flugelman MY, Vlodavsky I, Ilan N.

J Cell Sci. 2004 May 1;117(Pt 11):2249-58.

23.

Heparanase induces endothelial cell migration via protein kinase B/Akt activation.

Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N.

J Biol Chem. 2004 May 28;279(22):23536-41. Epub 2004 Mar 24.

Supplemental Content

Loading ...
Support Center