Send to

Choose Destination
Clin Cancer Res. 2017 Oct 15;23(20):6190-6202. doi: 10.1158/1078-0432.CCR-17-0681. Epub 2017 Jul 13.

Local Delivery of OncoVEXmGM-CSF Generates Systemic Antitumor Immune Responses Enhanced by Cytotoxic T-Lymphocyte-Associated Protein Blockade.

Author information

Oncology Research, Amgen Inc., South San Francisco, California.
Oncology Research, Amgen Inc., Thousand Oaks, California.
Therapeutic Innovation Unit, Amgen Inc., Seattle, Washington.
Pathology Department, Amgen Inc., Cambridge Massachusetts.
Research Imaging Sciences, Amgen Inc., Thousand Oaks, California.
Comparative Biology & Safety Sciences, Amgen Inc., South San Francisco, California.
Oncology Research, Amgen Inc., Thousand Oaks, California.


Purpose: Talimogene laherparepvec, a new oncolytic immunotherapy, has been recently approved for the treatment of melanoma. Using a murine version of the virus, we characterized local and systemic antitumor immune responses driving efficacy in murine syngeneic models.Experimental Design: The activity of talimogene laherparepvec was characterized against melanoma cell lines using an in vitro viability assay. Efficacy of OncoVEXmGM-CSF (talimogene laherparepvec with the mouse granulocyte-macrophage colony-stimulating factor transgene) alone or in combination with checkpoint blockade was characterized in A20 and CT-26 contralateral murine tumor models. CD8+ depletion, adoptive T-cell transfers, and Enzyme-Linked ImmunoSpot assays were used to study the mechanism of action (MOA) of systemic immune responses.Results: Treatment with OncoVEXmGM-CSF cured all injected A20 tumors and half of contralateral tumors. Viral presence was limited to injected tumors and was not responsible for systemic efficacy. A significant increase in T cells (CD3+/CD8+) was observed in injected and contralateral tumors at 168 hours. Ex vivo analyses showed these cytotoxic T lymphocytes were tumor-specific. Increased neutrophils, monocytes, and chemokines were observed in injected tumors only. Importantly, depletion of CD8+ T cells abolished all systemic efficacy and significantly decreased local efficacy. In addition, immune cell transfer from OncoVEXmGM-CSF-cured mice significantly protected from tumor challenge. Finally, combination of OncoVEXmGM-CSF and checkpoint blockade resulted in increased tumor-specific CD8+ anti-AH1 T cells and systemic efficacy.Conclusions: The data support a dual MOA for OncoVEXmGM-CSF that involves direct oncolysis of injected tumors and activation of a CD8+-dependent systemic response that clears injected and contralateral tumors when combined with checkpoint inhibition. Clin Cancer Res; 23(20); 6190-202. ©2017 AACR.

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center