Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 46

1.

Interplay between positive and negative elongation factors: drawing a new view of DRB.

Yamaguchi Y, Wada T, Handa H.

Genes Cells. 1998 Jan;3(1):9-15. Review.

2.

Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation.

Wu-Baer F, Lane WS, Gaynor RB.

J Mol Biol. 1998 Mar 27;277(2):179-97.

PMID:
9514752
3.

Identification of multiple cyclin subunits of human P-TEFb.

Peng J, Zhu Y, Milton JT, Price DH.

Genes Dev. 1998 Mar 1;12(5):755-62.

4.
5.
6.

DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs.

Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H.

Genes Dev. 1998 Feb 1;12(3):343-56.

7.

The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II.

Cujec TP, Okamoto H, Fujinaga K, Meyer J, Chamberlin H, Morgan DO, Peterlin BM.

Genes Dev. 1997 Oct 15;11(20):2645-57.

8.

P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro.

Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, Peng J, Blau C, Hazuda D, Price D, Flores O.

Genes Dev. 1997 Oct 15;11(20):2633-44.

9.

Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro.

Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH.

Genes Dev. 1997 Oct 15;11(20):2622-32.

10.

Basic mechanisms of transcript elongation and its regulation.

Uptain SM, Kane CM, Chamberlin MJ.

Annu Rev Biochem. 1997;66:117-72. Review.

PMID:
9242904
11.

Human Supt5h protein, a putative modulator of chromatin structure, is reversibly phosphorylated in mitosis.

Stachora AA, Schäfer RE, Pohlmeier M, Maier G, Ponstingl H.

FEBS Lett. 1997 Jun 2;409(1):74-8.

12.

Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription.

García-Martínez LF, Mavankal G, Neveu JM, Lane WS, Ivanov D, Gaynor RB.

EMBO J. 1997 May 15;16(10):2836-50.

13.
14.

Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase.

Marshall NF, Peng J, Xie Z, Price DH.

J Biol Chem. 1996 Oct 25;271(43):27176-83.

15.

A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix.

Mortillaro MJ, Blencowe BJ, Wei X, Nakayasu H, Du L, Warren SL, Sharp PA, Berezney R.

Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8253-7.

16.

TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes.

Yankulov KY, Pandes M, McCracken S, Bouchard D, Bentley DL.

Mol Cell Biol. 1996 Jul;16(7):3291-9.

17.

Three functional classes of transcriptional activation domain.

Blau J, Xiao H, McCracken S, O'Hare P, Greenblatt J, Bentley D.

Mol Cell Biol. 1996 May;16(5):2044-55.

18.
19.

Copurification of casein kinase II with transcription factor ATF/E4TF3.

Wada T, Takagi T, Yamaguchi Y, Kawase H, Hiramoto M, Ferdous A, Takayama M, Lee KA, Hurst HC, Handa H.

Nucleic Acids Res. 1996 Mar 1;24(5):876-84.

Supplemental Content

Support Center