Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27

1.

The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg.

KAISER AD, HOGNESS DS.

J Mol Biol. 1960 Dec;2:392-415. No abstract available.

PMID:
13750787
2.

Interactions between chemotaxis genes and flagellar genes in Escherichia coli.

Parkinson JS, Parker SR, Talbert PB, Houts SE.

J Bacteriol. 1983 Jul;155(1):265-74.

3.

The role of a signaling protein in bacterial sensing: behavioral effects of increased gene expression.

Clegg DO, Koshland DE Jr.

Proc Natl Acad Sci U S A. 1984 Aug;81(16):5056-60.

4.

Chemotaxis in Escherichia coli analysed by three-dimensional tracking.

Berg HC, Brown DA.

Nature. 1972 Oct 27;239(5374):500-4. No abstract available.

PMID:
4563019
5.

The gradient-sensing mechanism in bacterial chemotaxis.

Macnab RM, Koshland DE Jr.

Proc Natl Acad Sci U S A. 1972 Sep;69(9):2509-12.

6.

Reconstitution of signaling in bacterial chemotaxis.

Wolfe AJ, Conley MP, Kramer TJ, Berg HC.

J Bacteriol. 1987 May;169(5):1878-85.

7.

Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium.

Yamaguchi S, Aizawa S, Kihara M, Isomura M, Jones CJ, Macnab RM.

J Bacteriol. 1986 Dec;168(3):1172-9.

8.

Restoration of flagellar clockwise rotation in bacterial envelopes by insertion of the chemotaxis protein CheY.

Ravid S, Matsumura P, Eisenbach M.

Proc Natl Acad Sci U S A. 1986 Oct;83(19):7157-61.

9.
10.

Identification of a site of ATP requirement for signal processing in bacterial chemotaxis.

Smith JM, Rowsell EH, Shioi J, Taylor BL.

J Bacteriol. 1988 Jun;170(6):2698-704.

11.
12.

Multiple kinetic states for the flagellar motor switch.

Kuo SC, Koshland DE Jr.

J Bacteriol. 1989 Nov;171(11):6279-87.

13.

Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer.

Borkovich KA, Kaplan N, Hess JF, Simon MI.

Proc Natl Acad Sci U S A. 1989 Feb;86(4):1208-12.

14.

Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY.

Bourret RB, Hess JF, Simon MI.

Proc Natl Acad Sci U S A. 1990 Jan;87(1):41-5.

15.

Signal transduction in Halobacterium depends on fumarate.

Marwan W, Schäfer W, Oesterhelt D.

EMBO J. 1990 Feb;9(2):355-62.

16.

Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis.

Lukat GS, Stock AM, Stock JB.

Biochemistry. 1990 Jun 12;29(23):5436-42.

PMID:
2201404
17.

Use of T7 RNA polymerase to direct expression of cloned genes.

Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW.

Methods Enzymol. 1990;185:60-89. No abstract available.

PMID:
2199796
18.

Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis.

Lukat GS, Lee BH, Mottonen JM, Stock AM, Stock JB.

J Biol Chem. 1991 May 5;266(13):8348-54.

19.

Signal transduction pathways involving protein phosphorylation in prokaryotes.

Bourret RB, Borkovich KA, Simon MI.

Annu Rev Biochem. 1991;60:401-41. Review. No abstract available.

PMID:
1883200
20.

Reconstitution of the bacterial chemotaxis signal transduction system from purified components.

Ninfa EG, Stock A, Mowbray S, Stock J.

J Biol Chem. 1991 May 25;266(15):9764-70.

Supplemental Content

Support Center