Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 65

1.

Dynamic causal modelling of lateral interactions in the visual cortex.

Pinotsis DA, Schwarzkopf DS, Litvak V, Rees G, Barnes G, Friston KJ.

Neuroimage. 2013 Feb 1;66:563-76. doi: 10.1016/j.neuroimage.2012.10.078.

2.

Good practice for conducting and reporting MEG research.

Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, Oostenveld R, Parkkonen L, Taylor JR, van Wassenhove V, Wibral M, Schoffelen JM.

Neuroimage. 2013 Jan 15;65:349-63. doi: 10.1016/j.neuroimage.2012.10.001.

3.

Laminar analysis of visually evoked activity in the primary visual cortex.

Xing D, Yeh CI, Burns S, Shapley RM.

Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13871-6. doi: 10.1073/pnas.1201478109.

4.

Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations.

Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA.

Front Comput Neurosci. 2012 Jul 24;6:53. doi: 10.3389/fncom.2012.00053.

5.

Are extrasynaptic GABAA receptors important targets for sedative/hypnotic drugs?

Houston CM, McGee TP, Mackenzie G, Troyano-Cuturi K, Rodriguez PM, Kutsarova E, Diamanti E, Hosie AM, Franks NP, Brickley SG.

J Neurosci. 2012 Mar 14;32(11):3887-97. doi: 10.1523/JNEUROSCI.5406-11.2012.

6.

Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms.

Hindriks R, van Putten MJ.

Neuroimage. 2012 May 1;60(4):2323-34. doi: 10.1016/j.neuroimage.2012.02.042.

PMID:
22394672
7.

Cholinergic enhancement of visual attention and neural oscillations in the human brain.

Bauer M, Kluge C, Bach D, Bradbury D, Heinze HJ, Dolan RJ, Driver J.

Curr Biol. 2012 Mar 6;22(5):397-402. doi: 10.1016/j.cub.2012.01.022.

8.

The frequency of visually induced γ-band oscillations depends on the size of early human visual cortex.

Schwarzkopf DS, Robertson DJ, Song C, Barnes GR, Rees G.

J Neurosci. 2012 Jan 25;32(4):1507-12. doi: 10.1523/JNEUROSCI.4771-11.2012.

9.

Sustained gamma band synchronization in early visual areas reflects the level of selective attention.

Kahlbrock N, Butz M, May ES, Schnitzler A.

Neuroimage. 2012 Jan 2;59(1):673-81. doi: 10.1016/j.neuroimage.2011.07.017.

PMID:
21784164
10.

Retinotopic mapping of the primary visual cortex - a challenge for MEG imaging of the human cortex.

Perry G, Adjamian P, Thai NJ, Holliday IE, Hillebrand A, Barnes GR.

Eur J Neurosci. 2011 Aug;34(4):652-61. doi: 10.1111/j.1460-9568.2011.07777.x.

11.

Major role of GABA(A)-receptor mediated tonic inhibition in propofol suppression of supraoptic magnocellular neurons.

Jeong JA, Kim EJ, Jo JY, Song JG, Lee KS, Kim HW, Lee SD, Jeon BH, Lee JU, Park JB.

Neurosci Lett. 2011 Apr 25;494(2):119-23. doi: 10.1016/j.neulet.2011.02.072.

PMID:
21376783
12.

Propofol anesthesia and sleep: a high-density EEG study.

Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant JF, Phillips C, Massimini M, Laureys S, Tononi G, Boly M.

Sleep. 2011 Mar 1;34(3):283-91A.

13.

Relating MEG measured motor cortical oscillations to resting γ-aminobutyric acid (GABA) concentration.

Gaetz W, Edgar JC, Wang DJ, Roberts TP.

Neuroimage. 2011 Mar 15;55(2):616-21. doi: 10.1016/j.neuroimage.2010.12.077.

14.

Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness.

Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ.

Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22665-70. doi: 10.1073/pnas.1017069108.

15.

Functional properties of human primary motor cortex gamma oscillations.

Muthukumaraswamy SD.

J Neurophysiol. 2010 Nov;104(5):2873-85. doi: 10.1152/jn.00607.2010.

16.

Differences in gamma frequencies across visual cortex restrict their possible use in computation.

Ray S, Maunsell JH.

Neuron. 2010 Sep 9;67(5):885-96. doi: 10.1016/j.neuron.2010.08.004.

17.

Antagonistic relationship between gamma power and visual evoked potentials revealed in human visual cortex.

Privman E, Fisch L, Neufeld MY, Kramer U, Kipervasser S, Andelman F, Yeshurun Y, Fried I, Malach R.

Cereb Cortex. 2011 Mar;21(3):616-24. doi: 10.1093/cercor/bhq128.

PMID:
20624838
18.

High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

Oke OO, Magony A, Anver H, Ward PD, Jiruska P, Jefferys JG, Vreugdenhil M.

Eur J Neurosci. 2010 Apr;31(8):1435-45. doi: 10.1111/j.1460-9568.2010.07171.x.

PMID:
20384769
19.

Abnormal neural oscillations and synchrony in schizophrenia.

Uhlhaas PJ, Singer W.

Nat Rev Neurosci. 2010 Feb;11(2):100-13. doi: 10.1038/nrn2774. Review.

PMID:
20087360
20.

Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons.

Mann EO, Mody I.

Nat Neurosci. 2010 Feb;13(2):205-12. doi: 10.1038/nn.2464.

Items per page

Supplemental Content

Support Center