Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 41

1.

Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition.

Diers AR, Broniowska KA, Chang CF, Hogg N.

Biochem J. 2012 Jun 15;444(3):561-71. doi: 10.1042/BJ20120294.

2.

Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.

Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, Broda P, Minetti C, Lisanti MP, Sotgia F.

Cell Cycle. 2011 Dec 1;10(23):4047-64. doi: 10.4161/cc.10.23.18151.

3.

Functional genomics reveal that the serine synthesis pathway is essential in breast cancer.

Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM.

Nature. 2011 Aug 18;476(7360):346-50. doi: 10.1038/nature10350.

4.

Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation.

Suganuma K, Miwa H, Imai N, Shikami M, Gotou M, Goto M, Mizuno S, Takahashi M, Yamamoto H, Hiramatsu A, Wakabayashi M, Watarai M, Hanamura I, Imamura A, Mihara H, Nitta M.

Leuk Lymphoma. 2010 Nov;51(11):2112-9. doi: 10.3109/10428194.2010.512966.

PMID:
20860495
5.

The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression.

Diaz-Ruiz R, Rigoulet M, Devin A.

Biochim Biophys Acta. 2011 Jun;1807(6):568-76. doi: 10.1016/j.bbabio.2010.08.010. Review.

6.

Metabolic flexibility and cell hierarchy in metastatic cancer.

Berridge MV, Herst PM, Tan AS.

Mitochondrion. 2010 Nov;10(6):584-8. doi: 10.1016/j.mito.2010.08.002. Review.

PMID:
20709626
7.

Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation.

Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Töröcsik B, Doczi J, Turiak L, Kiss G, Konràd C, Vajda S, Vereczki V, Oh RJ, Adam-Vizi V.

FASEB J. 2010 Jul;24(7):2405-16. doi: 10.1096/fj.09-149898.

8.

Verification and unmasking of widely used human esophageal adenocarcinoma cell lines.

Boonstra JJ, van Marion R, Beer DG, Lin L, Chaves P, Ribeiro C, Pereira AD, Roque L, Darnton SJ, Altorki NK, Schrump DS, Klimstra DS, Tang LH, Eshleman JR, Alvarez H, Shimada Y, van Dekken H, Tilanus HW, Dinjens WN.

J Natl Cancer Inst. 2010 Feb 24;102(4):271-4. doi: 10.1093/jnci/djp499.

9.

THE METABOLISM OF TUMORS IN THE BODY.

Warburg O, Wind F, Negelein E.

J Gen Physiol. 1927 Mar 7;8(6):519-30. No abstract available.

10.

Understanding the Warburg effect: the metabolic requirements of cell proliferation.

Vander Heiden MG, Cantley LC, Thompson CB.

Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809. Review.

11.

LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer.

Xie H, Valera VA, Merino MJ, Amato AM, Signoretti S, Linehan WM, Sukhatme VP, Seth P.

Mol Cancer Ther. 2009 Mar;8(3):626-35. doi: 10.1158/1535-7163.MCT-08-1049.

12.

Different redox states in malignant and nonmalignant esophageal epithelial cells and differential cytotoxic responses to bile acid and honokiol.

Chen G, Izzo J, Demizu Y, Wang F, Guha S, Wu X, Hung MC, Ajani JA, Huang P.

Antioxid Redox Signal. 2009 May;11(5):1083-95. doi: 10.1089/ARS.2008.2321.

13.

Correlations between selected tumor markers and fluorodeoxyglucose maximal standardized uptake values in esophageal cancer.

Taylor MD, Smith PW, Brix WK, Wick MR, Theodosakis N, Swenson BR, Kozower BD, Jones DR.

Eur J Cardiothorac Surg. 2009 Apr;35(4):699-705. doi: 10.1016/j.ejcts.2008.11.029.

14.

Mitochondria in cancer: not just innocent bystanders.

Frezza C, Gottlieb E.

Semin Cancer Biol. 2009 Feb;19(1):4-11. doi: 10.1016/j.semcancer.2008.11.008. Review.

PMID:
19101633
15.

MITOMASTER: a bioinformatics tool for the analysis of mitochondrial DNA sequences.

Brandon MC, Ruiz-Pesini E, Mishmar D, Procaccio V, Lott MT, Nguyen KC, Spolim S, Patil U, Baldi P, Wallace DC.

Hum Mutat. 2009 Jan;30(1):1-6. doi: 10.1002/humu.20801.

16.

Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett's esophagus.

Wang KK, Sampliner RE; Practice Parameters Committee of the American College of Gastroenterology..

Am J Gastroenterol. 2008 Mar;103(3):788-97. doi: 10.1111/j.1572-0241.2008.01835.x. No abstract available.

PMID:
18341497
17.

Risk of mortality and cancer incidence in Barrett's esophagus.

Cook MB, Wild CP, Everett SM, Hardie LJ, Bani-Hani KE, Martin IG, Forman D.

Cancer Epidemiol Biomarkers Prev. 2007 Oct;16(10):2090-6.

18.

The Warburg effect and its cancer therapeutic implications.

Chen Z, Lu W, Garcia-Prieto C, Huang P.

J Bioenerg Biomembr. 2007 Jun;39(3):267-74. Review.

PMID:
17551814
19.

Increasing expression of hypoxia-inducible proteins in the Barrett's metaplasia-dysplasia-adenocarcinoma sequence.

Griffiths EA, Pritchard SA, McGrath SM, Valentine HR, Price PM, Welch IM, West CM.

Br J Cancer. 2007 May 7;96(9):1377-83.

20.

NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma.

Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD, Ayub K, Rabinovitch PS, Vaughan TL, Reid BJ.

PLoS Med. 2007 Feb;4(2):e67.

Items per page

Supplemental Content

Support Center