Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

A metabolomic strategy defines the regulation of lipid content and global metabolism by Δ9 desaturases in Caenorhabditis elegans.

Castro C, Sar F, Shaw WR, Mishima M, Miska EA, Griffin JL.

BMC Genomics. 2012 Jan 20;13:36. doi: 10.1186/1471-2164-13-36.

2.

A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans.

Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ, Vance DE, Tzoneva M, Hart AC, Näär AM.

Cell. 2011 Nov 11;147(4):840-52. doi: 10.1016/j.cell.2011.09.045. Epub 2011 Oct 27.

3.

Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase.

Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-Supprian M, Vance DE, Mann M, Farese RV Jr, Walther TC.

Cell Metab. 2011 Oct 5;14(4):504-15. doi: 10.1016/j.cmet.2011.07.013.

4.

Regulation of fat storage and reproduction by Krüppel-like transcription factor KLF3 and fat-associated genes in Caenorhabditis elegans.

Zhang J, Bakheet R, Parhar RS, Huang CH, Hussain MM, Pan X, Siddiqui SS, Hashmi S.

J Mol Biol. 2011 Aug 19;411(3):537-53. doi: 10.1016/j.jmb.2011.06.011. Epub 2011 Jun 17.

5.

Novel functions of lipid-binding protein 5 in Caenorhabditis elegans fat metabolism.

Xu M, Joo HJ, Paik YK.

J Biol Chem. 2011 Aug 12;286(32):28111-8. doi: 10.1074/jbc.M111.227165. Epub 2011 Jun 22.

6.

Caenorhabditis Elegans Mutants Predict Regulation of Fatty Acids and Endocannabinoids by the CYP-35A Gene Family.

Aarnio V, Lehtonen M, Storvik M, Callaway JC, Lakso M, Wong G.

Front Pharmacol. 2011 Mar 18;2:12. doi: 10.3389/fphar.2011.00012. eCollection 2011.

7.

Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans.

Elle IC, Simonsen KT, Olsen LC, Birck PK, Ehmsen S, Tuck S, Le TT, Færgeman NJ.

Biochem J. 2011 Jul 15;437(2):231-41. doi: 10.1042/BJ20102099.

PMID:
21539519
8.

Control of body size in C. elegans dependent on food and insulin/IGF-1 signal.

So S, Miyahara K, Ohshima Y.

Genes Cells. 2011 Jun;16(6):639-51. doi: 10.1111/j.1365-2443.2011.01514.x. Epub 2011 Apr 18.

9.

Fluorescence-based fixative and vital staining of lipid droplets in Caenorhabditis elegans reveal fat stores using microscopy and flow cytometry approaches.

Klapper M, Ehmke M, Palgunow D, Böhme M, Matthäus C, Bergner G, Dietzek B, Popp J, Döring F.

J Lipid Res. 2011 Jun;52(6):1281-93. doi: 10.1194/jlr.D011940. Epub 2011 Mar 18.

10.

Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25.

Mullaney BC, Blind RD, Lemieux GA, Perez CL, Elle IC, Faergeman NJ, Van Gilst MR, Ingraham HA, Ashrafi K.

Cell Metab. 2010 Oct 6;12(4):398-410. doi: 10.1016/j.cmet.2010.08.013.

11.

Apurinic/apyrimidinic endonuclease 1, p53, and thioredoxin are linked in control of aging in C. elegans.

Schlotterer A, Hamann A, Kukudov G, Ibrahim Y, Heckmann B, Bozorgmehr F, Pfeiffer M, Hutter H, Stern D, Du X, Brownlee M, Bierhaus A, Nawroth P, Morcos M.

Aging Cell. 2010 Jun;9(3):420-32. doi: 10.1111/j.1474-9726.2010.00572.x. Epub 2010 Mar 24.

12.

Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans.

Zhang SO, Box AC, Xu N, Le Men J, Yu J, Guo F, Trimble R, Mak HY.

Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4640-5. doi: 10.1073/pnas.0912308107. Epub 2010 Feb 22.

13.

Mild calorie restriction induces fat accumulation in female C57BL/6J mice.

Li X, Cope MB, Johnson MS, Smith DL Jr, Nagy TR.

Obesity (Silver Spring). 2010 Mar;18(3):456-62. doi: 10.1038/oby.2009.312. Epub 2009 Oct 1.

14.

Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans.

Park SK, Link CD, Johnson TE.

FASEB J. 2010 Feb;24(2):383-92. doi: 10.1096/fj.09-142984. Epub 2009 Sep 25.

15.

Starvation protects germline stem cells and extends reproductive longevity in C. elegans.

Angelo G, Van Gilst MR.

Science. 2009 Nov 13;326(5955):954-8. doi: 10.1126/science.1178343.

16.

AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity.

Greer EL, Banko MR, Brunet A.

Ann N Y Acad Sci. 2009 Jul;1170:688-92. doi: 10.1111/j.1749-6632.2009.04019.x.

17.

Comparing mutational and standing genetic variability for fitness and size in Caenorhabditis briggsae and C. elegans.

Salomon MP, Ostrow D, Phillips N, Blanton D, Bour W, Keller TE, Levy L, Sylvestre T, Upadhyay A, Baer CF.

Genetics. 2009 Oct;183(2):685-92, 1SI-19SI. doi: 10.1534/genetics.109.107383. Epub 2009 Aug 10.

18.

Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis.

Joo HJ, Yim YH, Jeong PY, Jin YX, Lee JE, Kim H, Jeong SK, Chitwood DJ, Paik YK.

Biochem J. 2009 Jul 29;422(1):61-71. doi: 10.1042/BJ20090513.

PMID:
19496754
19.

HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans.

Chen D, Thomas EL, Kapahi P.

PLoS Genet. 2009 May;5(5):e1000486. doi: 10.1371/journal.pgen.1000486. Epub 2009 May 22.

20.

Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans.

Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G.

Genes Dev. 2009 Feb 15;23(4):496-511. doi: 10.1101/gad.1775409.

Supplemental Content

Support Center