Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 69

1.

Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells.

Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, Weng Z, Rando OJ, Fazzio TG.

Cell. 2011 Dec 23;147(7):1498-510. doi: 10.1016/j.cell.2011.11.054.

2.

5-Hydroxymethylcytosine: a new kid on the epigenetic block?

Matarese F, Carrillo-de Santa Pau E, Stunnenberg HG.

Mol Syst Biol. 2011 Dec 20;7:562. doi: 10.1038/msb.2011.95.

3.

DNA-binding factors shape the mouse methylome at distal regulatory regions.

Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schübeler D.

Nature. 2011 Dec 14;480(7378):490-5. doi: 10.1038/nature10716. Erratum in: Nature. 2012 Apr 26;484(7395):550. van Nimwegen, Erik [added].

PMID:
22170606
4.

5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging.

Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, Irier H, Upadhyay AK, Gearing M, Levey AI, Vasanthakumar A, Godley LA, Chang Q, Cheng X, He C, Jin P.

Nat Neurosci. 2011 Oct 30;14(12):1607-16. doi: 10.1038/nn.2959.

5.

Forming functional fat: a growing understanding of adipocyte differentiation.

Cristancho AG, Lazar MA.

Nat Rev Mol Cell Biol. 2011 Sep 28;12(11):722-34. doi: 10.1038/nrm3198. Review.

PMID:
21952300
6.

Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers.

Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S.

Oncotarget. 2011 Aug;2(8):627-37.

7.

Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites.

Maiti A, Drohat AC.

J Biol Chem. 2011 Oct 14;286(41):35334-8. doi: 10.1074/jbc.C111.284620. Epub 2011 Aug 23.

8.

Cistrome: an integrative platform for transcriptional regulation studies.

Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, Shin H, Wong SS, Ma J, Lei Y, Pape UJ, Poidinger M, Chen Y, Yeung K, Brown M, Turpaz Y, Liu XS.

Genome Biol. 2011 Aug 22;12(8):R83. doi: 10.1186/gb-2011-12-8-r83.

9.

Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.

He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL.

Science. 2011 Sep 2;333(6047):1303-7. doi: 10.1126/science.1210944. Epub 2011 Aug 4.

10.

Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.

Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y.

Science. 2011 Sep 2;333(6047):1300-3. doi: 10.1126/science.1210597. Epub 2011 Jul 21.

11.

Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells.

Wu H, Zhang Y.

Cell Cycle. 2011 Aug 1;10(15):2428-36. Epub 2011 Aug 1.

12.

Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells.

Szulwach KE, Li X, Li Y, Song CX, Han JW, Kim S, Namburi S, Hermetz K, Kim JJ, Rudd MK, Yoon YS, Ren B, He C, Jin P.

PLoS Genet. 2011 Jun;7(6):e1002154. doi: 10.1371/journal.pgen.1002154. Epub 2011 Jun 23.

13.

DNA methylation status predicts cell type-specific enhancer activity.

Wiench M, John S, Baek S, Johnson TA, Sung MH, Escobar T, Simmons CA, Pearce KH, Biddie SC, Sabo PJ, Thurman RE, Stamatoyannopoulos JA, Hager GL.

EMBO J. 2011 Jun 24;30(15):3028-39. doi: 10.1038/emboj.2011.210.

14.

5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells.

Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE.

Genome Biol. 2011 Jun 20;12(6):R54. doi: 10.1186/gb-2011-12-6-r54.

15.

CENTDIST: discovery of co-associated factors by motif distribution.

Zhang Z, Chang CW, Goh WL, Sung WK, Cheung E.

Nucleic Acids Res. 2011 Jul;39(Web Server issue):W391-9. doi: 10.1093/nar/gkr387. Epub 2011 May 20.

16.

Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.

Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A.

Nature. 2011 May 19;473(7347):394-7. doi: 10.1038/nature10102. Epub 2011 May 8.

17.

Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.

Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG.

Mol Cell. 2011 May 20;42(4):451-64. doi: 10.1016/j.molcel.2011.04.005. Epub 2011 Apr 21.

18.

TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.

Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K.

Nature. 2011 May 19;473(7347):343-8. doi: 10.1038/nature10066. Epub 2011 Apr 13.

19.

Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.

Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W.

Nature. 2011 May 19;473(7347):398-402. doi: 10.1038/nature10008. Epub 2011 Apr 3.

PMID:
21460836
20.

Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells.

Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y.

Genes Dev. 2011 Apr 1;25(7):679-84. doi: 10.1101/gad.2036011.

Supplemental Content

Support Center