Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 169

1.

Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations.

Pereira FB, Guimarães PM, Gomes DG, Mira NP, Teixeira MC, Sá-Correia I, Domingues L.

Biotechnol Biofuels. 2011 Dec 9;4(1):57. doi: 10.1186/1754-6834-4-57.

2.

Yeast: an experimental organism for 21st Century biology.

Botstein D, Fink GR.

Genetics. 2011 Nov;189(3):695-704. doi: 10.1534/genetics.111.130765. Review.

3.

Qualitative modelling and formal verification of the FLR1 gene mancozeb response in Saccharomyces cerevisiae.

Monteiro PT, Dias PJ, Ropers D, Oliveira AL, Sá-Correia I, Teixeira MC, Freitas AT.

IET Syst Biol. 2011 Sep;5(5):308-16. doi: 10.1049/iet-syb.2011.0001.

PMID:
22010757
4.

A new high resolution screening method for study of phenotype stress responses of Saccharomyces cerevisae mutants.

Sletta H, Klinkenberg G, Winnberg A, Kvitvang HF, Nilsen MB, Krokan HE, Otterlei M, Bruheim P.

J Microbiol Methods. 2011 Dec;87(3):363-7. doi: 10.1016/j.mimet.2011.10.003.

PMID:
22008504
5.

A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine.

Dos Santos SC, Sá-Correia I.

Mol Genet Genomics. 2011 Dec;286(5-6):333-46. doi: 10.1007/s00438-011-0649-5.

PMID:
21960436
6.

The yeast ABC transporter Pdr18 (ORF YNR070w) controls plasma membrane sterol composition, playing a role in multidrug resistance.

Cabrito TR, Teixeira MC, Singh A, Prasad R, Sá-Correia I.

Biochem J. 2011 Dec 1;440(2):195-202. doi: 10.1042/BJ20110876.

7.

Functional toxicogenomics: mechanism-centered toxicology.

North M, Vulpe CD.

Int J Mol Sci. 2010;11(12):4796-813. doi: 10.3390/ijms11124796. Review.

8.

Teaching expression proteomics: From the wet-lab to the laptop.

Teixeira MC, Santos PM, Rodrigues C, Sá-Correia I.

Biochem Mol Biol Educ. 2009 Sep;37(5):279-86. doi: 10.1002/bmb.20315.

9.

Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae.

Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A.

Microb Cell Fact. 2011 Jan 10;10(1):2. doi: 10.1186/1475-2859-10-2.

10.

High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae.

Bleackley MR, Young BP, Loewen CJ, MacGillivray RT.

Metallomics. 2011 Feb;3(2):195-205. doi: 10.1039/c0mt00035c.

PMID:
21212869
11.

2D electrophoresis-based expression proteomics: a microbiologist's perspective.

Sá-Correia I, Teixeira MC.

Expert Rev Proteomics. 2010 Dec;7(6):943-53. doi: 10.1586/epr.10.76. Review.

PMID:
21142894
12.

A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae.

Teixeira MC, Mira NP, Sá-Correia I.

Curr Opin Biotechnol. 2011 Apr;22(2):150-6. doi: 10.1016/j.copbio.2010.10.011. Review.

PMID:
21087853
13.

Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.

Mira NP, Palma M, Guerreiro JF, Sá-Correia I.

Microb Cell Fact. 2010 Oct 25;9:79. doi: 10.1186/1475-2859-9-79.

14.

YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface.

Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenço AB, dos Santos SC, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL, Sá-Correia I, Freitas AT.

Nucleic Acids Res. 2011 Jan;39(Database issue):D136-40. doi: 10.1093/nar/gkq964.

15.

Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid.

Mira NP, Becker JD, Sá-Correia I.

OMICS. 2010 Oct;14(5):587-601. doi: 10.1089/omi.2010.0048.

16.

Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.

Teixeira MC, Dias PJ, Monteiro PT, Sala A, Oliveira AL, Freitas AT, Sá-Correia I.

Mol Biosyst. 2010 Dec;6(12):2471-81. doi: 10.1039/c004881j.

PMID:
20938527
17.

Genome-wide screen of Saccharomyces cerevisiae for killer toxin HM-1 resistance.

Miyamoto M, Furuichi Y, Komiyama T.

Yeast. 2011 Jan;28(1):27-41. doi: 10.1002/yea.1818.

18.

Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast.

Landstetter N, Glaser W, Gregori C, Seipelt J, Kuchler K.

OMICS. 2010 Dec;14(6):651-63. doi: 10.1089/omi.2010.0031.

PMID:
20695822
19.

Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae.

Stanley D, Chambers PJ, Stanley GA, Borneman A, Fraser S.

Appl Microbiol Biotechnol. 2010 Sep;88(1):231-9. doi: 10.1007/s00253-010-2760-7.

PMID:
20661734
20.

A survey of yeast genomic assays for drug and target discovery.

Smith AM, Ammar R, Nislow C, Giaever G.

Pharmacol Ther. 2010 Aug;127(2):156-64. doi: 10.1016/j.pharmthera.2010.04.012. Review.

Items per page

Supplemental Content

Support Center