Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 34

1.

A progressive approach on zebrafish toward sensitive evaluation of nanoparticles' toxicity.

Liu Y, Liu B, Feng D, Gao C, Wu M, He N, Yang X, Li L, Feng X.

Integr Biol (Camb). 2012 Mar;4(3):285-91. doi: 10.1039/c2ib00130f.

PMID:
22267261
2.

High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles.

Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, George S, Xiong S, Wang X, Zhang H, Pokhrel S, Mädler L, Damoiseaux R, Lin S, Nel AE.

ACS Nano. 2011 Sep 27;5(9):7284-95. doi: 10.1021/nn202116p.

3.

Toxicity of silver nanoparticles in zebrafish models.

Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S.

Nanotechnology. 2008 Jun 25;19(25):255102. doi: 10.1088/0957-4484/19/25/255102.

PMID:
21828644
4.

Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials.

George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE.

ACS Nano. 2011 Mar 22;5(3):1805-17. doi: 10.1021/nn102734s.

5.

The zebrafish: a powerful platform for in vivo, HTS drug discovery.

Delvecchio C, Tiefenbach J, Krause HM.

Assay Drug Dev Technol. 2011 Aug;9(4):354-61. doi: 10.1089/adt.2010.0346. Review.

PMID:
21309713
6.

No time to lose--high throughput screening to assess nanomaterial safety.

Damoiseaux R, George S, Li M, Pokhrel S, Ji Z, France B, Xia T, Suarez E, Rallo R, Mädler L, Cohen Y, Hoek EM, Nel A.

Nanoscale. 2011 Apr;3(4):1345-60. doi: 10.1039/c0nr00618a. Review.

7.

High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope.

Blackburn JS, Liu S, Raimondi AR, Ignatius MS, Salthouse CD, Langenau DM.

Nat Protoc. 2011 Feb;6(2):229-41. doi: 10.1038/nprot.2010.170.

8.

Nanomaterials in the environment: from materials to high-throughput screening to organisms.

Thomas CR, George S, Horst AM, Ji Z, Miller RJ, Peralta-Videa JR, Xia T, Pokhrel S, Mädler L, Gardea-Torresdey JL, Holden PA, Keller AA, Lenihan HS, Nel AE, Zink JI.

ACS Nano. 2011 Jan 25;5(1):13-20. doi: 10.1021/nn1034857. Review.

PMID:
21261306
9.

Self-organizing map analysis of toxicity-related cell signaling pathways for metal and metal oxide nanoparticles.

Rallo R, France B, Liu R, Nair S, George S, Damoiseaux R, Giralt F, Nel A, Bradley K, Cohen Y.

Environ Sci Technol. 2011 Feb 15;45(4):1695-702. doi: 10.1021/es103606x.

10.

Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos.

Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, Schoenfeld D, Meng H, Lin S, Wang X, Wang M, Ji Z, Zink JI, Mädler L, Castranova V, Lin S, Nel AE.

ACS Nano. 2011 Feb 22;5(2):1223-35. doi: 10.1021/nn1028482.

11.

A high-throughput chemically induced inflammation assay in zebrafish.

d'Alençon CA, Peña OA, Wittmann C, Gallardo VE, Jones RA, Loosli F, Liebel U, Grabher C, Allende ML.

BMC Biol. 2010 Dec 22;8:151. doi: 10.1186/1741-7007-8-151.

12.

Effects of copper nanoparticles on the development of zebrafish embryos.

Bai W, Tian W, Zhang Z, He X, Ma Y, Liu N, Chai Z.

J Nanosci Nanotechnol. 2010 Dec;10(12):8670-6.

PMID:
21121381
13.

A high-throughput analysis method to detect regions of interest and quantify zebrafish embryo images.

Xu X, Xu X, Huang X, Xia W, Xia S.

J Biomol Screen. 2010 Oct;15(9):1152-9. doi: 10.1177/1087057110379155.

PMID:
20930217
14.

Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos.

Gehrig J, Reischl M, Kalmár E, Ferg M, Hadzhiev Y, Zaucker A, Song C, Schindler S, Liebel U, Müller F.

Nat Methods. 2009 Dec;6(12):911-6. doi: 10.1038/nmeth.1396.

PMID:
19898487
15.

Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos.

Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY.

Small. 2009 Aug 17;5(16):1897-910. doi: 10.1002/smll.200801716.

PMID:
19437466
16.

The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio).

Zhu X, Wang J, Zhang X, Chang Y, Chen Y.

Nanotechnology. 2009 May 13;20(19):195103. doi: 10.1088/0957-4484/20/19/195103.

PMID:
19420631
17.

In vitro assessments of nanomaterial toxicity.

Jones CF, Grainger DW.

Adv Drug Deliv Rev. 2009 Jun 21;61(6):438-56. doi: 10.1016/j.addr.2009.03.005. Review.

18.

Quantum dot nanotoxicity assessment using the zebrafish embryo.

King-Heiden TC, Wiecinski PN, Mangham AN, Metz KM, Nesbit D, Pedersen JA, Hamers RJ, Heideman W, Peterson RE.

Environ Sci Technol. 2009 Mar 1;43(5):1605-11.

19.

Automated image-based phenotypic analysis in zebrafish embryos.

Vogt A, Cholewinski A, Shen X, Nelson SG, Lazo JS, Tsang M, Hukriede NA.

Dev Dyn. 2009 Mar;238(3):656-63. doi: 10.1002/dvdy.21892.

20.

In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos.

Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH.

ACS Nano. 2007 Sep;1(2):133-43. doi: 10.1021/nn700048y.

Items per page

Supplemental Content

Support Center