Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27

1.

Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing.

Baum A, Sachidanandam R, García-Sastre A.

Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16303-8. doi: 10.1073/pnas.1005077107. Epub 2010 Aug 30. Erratum in: Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3092.

2.

The structural basis of 5' triphosphate double-stranded RNA recognition by RIG-I C-terminal domain.

Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY, Hu F, Herr AB, Strong RK, Kao CC, Li P.

Structure. 2010 Aug 11;18(8):1032-43. doi: 10.1016/j.str.2010.05.007. Epub 2010 Jul 15.

3.

Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I.

Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, Li H, Juranek S, Sheng G, Micura R, Tuschl T, Hartmann G, Patel DJ.

Nat Struct Mol Biol. 2010 Jul;17(7):781-7. doi: 10.1038/nsmb.1863. Epub 2010 Jun 27.

4.

5'PPP-RNA induced RIG-I activation inhibits drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza virus replication.

Ranjan P, Jayashankar L, Deyde V, Zeng H, Davis WG, Pearce MB, Bowzard JB, Hoelscher MA, Jeisy-Scott V, Wiens ME, Gangappa S, Gubareva L, García-Sastre A, Katz JM, Tumpey TM, Fujita T, Sambhara S.

Virol J. 2010 May 21;7:102. doi: 10.1186/1743-422X-7-102.

5.

RIG-I detects viral genomic RNA during negative-strand RNA virus infection.

Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C.

Cell. 2010 Feb 5;140(3):397-408. doi: 10.1016/j.cell.2010.01.020.

6.

RIG-I activation inhibits ebolavirus replication.

Spiropoulou CF, Ranjan P, Pearce MB, Sealy TK, Albariño CG, Gangappa S, Fujita T, Rollin PE, Nichol ST, Ksiazek TG, Sambhara S.

Virology. 2009 Sep 15;392(1):11-5. doi: 10.1016/j.virol.2009.06.032. Epub 2009 Jul 23.

7.

Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus.

Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, Juranek S, Kato H, Kawai T, Poeck H, Fitzgerald KA, Takeuchi O, Akira S, Tuschl T, Latz E, Ludwig J, Hartmann G.

Immunity. 2009 Jul 17;31(1):25-34. doi: 10.1016/j.immuni.2009.05.008. Epub 2009 Jul 2.

8.

5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I.

Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, Wenzel M, Hoffmann FS, Michallet MC, Besch R, Hopfner KP, Endres S, Rothenfusser S.

Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12067-72. doi: 10.1073/pnas.0900971106. Epub 2009 Jul 2.

9.

Innate immunity to pathogens: diversity in receptors for microbial recognition.

Akira S.

Immunol Rev. 2009 Jan;227(1):5-8. doi: 10.1111/j.1600-065X.2008.00739.x. No abstract available.

PMID:
19120470
10.

Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.

Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, Fujita T, Akira S.

J Exp Med. 2008 Jul 7;205(7):1601-10. doi: 10.1084/jem.20080091.

11.

Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA.

Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr.

Nature. 2008 Jul 24;454(7203):523-7. doi: 10.1038/nature07106. Epub 2008 Jun 11.

12.

The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I.

Cui S, Eisenächer K, Kirchhofer A, Brzózka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP.

Mol Cell. 2008 Feb 1;29(2):169-79. doi: 10.1016/j.molcel.2007.10.032.

13.

Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses.

Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, Gale M Jr, Inagaki F, Fujita T.

Mol Cell. 2008 Feb 29;29(4):428-40. doi: 10.1016/j.molcel.2007.11.028. Epub 2008 Jan 31.

14.

The immunogenic CBD1 peptide corresponding to the caveolin-1 binding domain in HIV-1 envelope gp41 has the capacity to penetrate the cell membrane and bind caveolin-1.

Benferhat R, Sanchez-Martinez S, Nieva JL, Briand JP, Hovanessian AG.

Mol Immunol. 2008 Apr;45(7):1963-75. Epub 2007 Dec 3.

PMID:
18054388
15.

Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.

Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, García-Sastre A, Katze MG, Gale M Jr.

J Virol. 2008 Jan;82(1):335-45. Epub 2007 Oct 17.

16.

DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response.

Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K, Ohba Y, Taniguchi T.

Nature. 2007 Jul 26;448(7152):501-5. Epub 2007 Jul 8.

PMID:
17618271
17.

5'-Triphosphate RNA is the ligand for RIG-I.

Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G.

Science. 2006 Nov 10;314(5801):994-7. Epub 2006 Oct 12.

18.

RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C.

Science. 2006 Nov 10;314(5801):997-1001. Epub 2006 Oct 12.

19.

Antiviral innate immunity pathways.

Seth RB, Sun L, Chen ZJ.

Cell Res. 2006 Feb;16(2):141-7. Review.

20.

The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.

Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T.

Nat Immunol. 2004 Jul;5(7):730-7. Epub 2004 Jun 20.

PMID:
15208624

Supplemental Content

Support Center