Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 49


Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells.

Carrière L, Graziani S, Alibert O, Ghavi-Helm Y, Boussouar F, Humbertclaude H, Jounier S, Aude JC, Keime C, Murvai J, Foglio M, Gut M, Gut I, Lathrop M, Soutourina J, Gérard M, Werner M.

Nucleic Acids Res. 2012 Jan;40(1):270-83. doi: 10.1093/nar/gkr737.


Pol III binding in six mammals shows conservation among amino acid isotypes despite divergence among tRNA genes.

Kutter C, Brown GD, Gonçalves A, Wilson MD, Watt S, Brazma A, White RJ, Odom DT.

Nat Genet. 2011 Aug 28;43(10):948-55. doi: 10.1038/ng.906.


Widespread occurrence of non-canonical transcription termination by human RNA polymerase III.

Orioli A, Pascali C, Quartararo J, Diebel KW, Praz V, Romascano D, Percudani R, van Dyk LF, Hernandez N, Teichmann M, Dieci G.

Nucleic Acids Res. 2011 Jul;39(13):5499-512. doi: 10.1093/nar/gkr074.


Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells.

Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M, Weng Z, Struhl K.

Nat Struct Mol Biol. 2010 May;17(5):635-40. doi: 10.1038/nsmb.1794.


Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors.

Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC, Chandler KJ, Cassiday PA, Nelson CA, Hagedorn CH, Graves BJ, Cairns BR.

Nat Struct Mol Biol. 2010 May;17(5):620-8. doi: 10.1038/nsmb.1801.


Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes.

Barski A, Chepelev I, Liko D, Cuddapah S, Fleming AB, Birch J, Cui K, White RJ, Zhao K.

Nat Struct Mol Biol. 2010 May;17(5):629-34. doi: 10.1038/nsmb.1806.


Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells.

Canella D, Praz V, Reina JH, Cousin P, Hernandez N.

Genome Res. 2010 Jun;20(6):710-21. doi: 10.1101/gr.101337.109.


4.5SI RNA genes and the role of their 5'-flanking sequences in the gene transcription.

Gogolevskaya IK, Kramerov DA.

Gene. 2010 Feb 1;451(1-2):32-7. doi: 10.1016/j.gene.2009.11.007.


Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.

Jothi R, Cuddapah S, Barski A, Cui K, Zhao K.

Nucleic Acids Res. 2008 Sep;36(16):5221-31. doi: 10.1093/nar/gkn488.


Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III.

Listerman I, Bledau AS, Grishina I, Neugebauer KM.

PLoS Genet. 2007 Nov;3(11):e212.


High-resolution profiling of histone methylations in the human genome.

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K.

Cell. 2007 May 18;129(4):823-37.


Ro-associated Y RNAs in metazoans: evolution and diversification.

Perreault J, Perreault JP, Boire G.

Mol Biol Evol. 2007 Aug;24(8):1678-89.


Chromatin modifications and their function.

Kouzarides T.

Cell. 2007 Feb 23;128(4):693-705. Review.


The mammalian epigenome.

Bernstein BE, Meissner A, Lander ES.

Cell. 2007 Feb 23;128(4):669-81. Review.


A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation.

Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD.

Mol Cell Biol. 2005 Apr;25(8):3305-16.


Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes.

Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D.

Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9.


Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II.

Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J.

Mol Cell Biol. 2003 Jun;23(12):4207-18.

Items per page

Supplemental Content

Support Center