Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization.

Bonazzi M, Vasudevan L, Mallet A, Sachse M, Sartori A, Prevost MC, Roberts A, Taner SB, Wilbur JD, Brodsky FM, Cossart P.

J Cell Biol. 2011 Oct 31;195(3):525-36. doi: 10.1083/jcb.201105152.

2.

Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin.

Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M.

J Exp Med. 2011 Oct 24;208(11):2263-77. doi: 10.1084/jem.20110560. Epub 2011 Oct 3.

3.

STING is a direct innate immune sensor of cyclic di-GMP.

Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE.

Nature. 2011 Sep 25;478(7370):515-8. doi: 10.1038/nature10429.

4.

OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence.

Aubry C, Goulard C, Nahori MA, Cayet N, Decalf J, Sachse M, Boneca IG, Cossart P, Dussurget O.

J Infect Dis. 2011 Sep 1;204(5):731-40. doi: 10.1093/infdis/jir396.

5.

Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy.

Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori MA, Wiemer EA, Dussurget O, Cossart P.

PLoS Pathog. 2011 Aug;7(8):e1002168. doi: 10.1371/journal.ppat.1002168. Epub 2011 Aug 4. Erratum in: PLoS Pathog. 2011 Sep;7(9). doi: 10.1371/annotation/a70544fc-6d8b-4549-921a-9e86557b0ffc. Louaka, Ascel Samba [corrected to Samba-Louaka, Ascel].

6.

p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways.

Mostowy S, Sancho-Shimizu V, Hamon MA, Simeone R, Brosch R, Johansen T, Cossart P.

J Biol Chem. 2011 Jul 29;286(30):26987-95. doi: 10.1074/jbc.M111.223610. Epub 2011 Jun 6.

7.

K+ efflux is required for histone H3 dephosphorylation by Listeria monocytogenes listeriolysin O and other pore-forming toxins.

Hamon MA, Cossart P.

Infect Immun. 2011 Jul;79(7):2839-46. doi: 10.1128/IAI.01243-10. Epub 2011 Apr 11.

8.

LipA, a tyrosine and lipid phosphatase involved in the virulence of Listeria monocytogenes.

Kastner R, Dussurget O, Archambaud C, Kernbauer E, Soulat D, Cossart P, Decker T.

Infect Immun. 2011 Jun;79(6):2489-98. doi: 10.1128/IAI.05073-11. Epub 2011 Mar 28.

9.

Regulation of Listeria virulence: PrfA master and commander.

de las Heras A, Cain RJ, Bielecka MK, Vázquez-Boland JA.

Curr Opin Microbiol. 2011 Apr;14(2):118-27. doi: 10.1016/j.mib.2011.01.005. Epub 2011 Mar 8. Review.

PMID:
21388862
10.

Cell biology and immunology of Listeria monocytogenes infections: novel insights.

Stavru F, Archambaud C, Cossart P.

Immunol Rev. 2011 Mar;240(1):160-84. doi: 10.1111/j.1600-065X.2010.00993.x. Review.

PMID:
21349093
11.

Listeria monocytogenes transiently alters mitochondrial dynamics during infection.

Stavru F, Bouillaud F, Sartori A, Ricquier D, Cossart P.

Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3612-7. doi: 10.1073/pnas.1100126108. Epub 2011 Feb 14.

12.

The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages.

Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C, Pischimarov J, Krawitz C, Retey J, Hartsch T, Chakraborty T, Hain T.

Nucleic Acids Res. 2011 May;39(10):4235-48. doi: 10.1093/nar/gkr033. Epub 2011 Jan 29.

13.

A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response.

Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Matteï PJ, Regnault B, Nahori MA, Cabanes D, Gautreau A, Ait-Si-Ali S, Dessen A, Cossart P, Bierne H.

Science. 2011 Mar 11;331(6022):1319-21. doi: 10.1126/science.1200120. Epub 2011 Jan 20.

14.

Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome.

Radtke AL, Anderson KL, Davis MJ, DiMagno MJ, Swanson JA, O'Riordan MX.

Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1633-8. doi: 10.1073/pnas.1013262108. Epub 2011 Jan 10.

15.

Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss.

den Bakker HC, Cummings CA, Ferreira V, Vatta P, Orsi RH, Degoricija L, Barker M, Petrauskene O, Furtado MR, Wiedmann M.

BMC Genomics. 2010 Dec 2;11:688. doi: 10.1186/1471-2164-11-688.

16.

Potentiation of epithelial innate host responses by intercellular communication.

Dolowschiak T, Chassin C, Ben Mkaddem S, Fuchs TM, Weiss S, Vandewalle A, Hornef MW.

PLoS Pathog. 2010 Nov 18;6(11):e1001194. doi: 10.1371/journal.ppat.1001194.

17.

Cell-cell propagation of NF-κB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection.

Kasper CA, Sorg I, Schmutz C, Tschon T, Wischnewski H, Kim ML, Arrieumerlou C.

Immunity. 2010 Nov 24;33(5):804-16. doi: 10.1016/j.immuni.2010.10.015.

18.

Entrapment of intracytosolic bacteria by septin cage-like structures.

Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M, Gouin E, Demangel C, Brosch R, Zimmer C, Sartori A, Kinoshita M, Lecuit M, Cossart P.

Cell Host Microbe. 2010 Nov 18;8(5):433-44. doi: 10.1016/j.chom.2010.10.009.

19.

Gram-positive pathogenic bacteria induce a common early response in human monocytes.

Tchatalbachev S, Ghai R, Hossain H, Chakraborty T.

BMC Microbiol. 2010 Nov 2;10:275. doi: 10.1186/1471-2180-10-275.

20.

The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the I{kappa}B kinase subunit IKK{alpha}.

Gouin E, Adib-Conquy M, Balestrino D, Nahori MA, Villiers V, Colland F, Dramsi S, Dussurget O, Cossart P.

Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17333-8. doi: 10.1073/pnas.1007765107. Epub 2010 Sep 20.

Supplemental Content

Support Center