Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

Functional overlap and regulatory links shape genetic interactions between signaling pathways.

van Wageningen S, Kemmeren P, Lijnzaad P, Margaritis T, Benschop JJ, de Castro IJ, van Leenen D, Groot Koerkamp MJ, Ko CW, Miles AJ, Brabers N, Brok MO, Lenstra TL, Fiedler D, Fokkens L, Aldecoa R, Apweiler E, Taliadouros V, Sameith K, van de Pasch LA, van Hooff SR, Bakker LV, Krogan NJ, Snel B, Holstege FC.

Cell. 2010 Dec 10;143(6):991-1004. doi: 10.1016/j.cell.2010.11.021.

2.

Comparative analysis of transcriptome and fitness profiles reveals general and condition-specific cellular functions involved in adaptation to environmental change in Saccharomyces cerevisiae.

Zakrzewska A, Boorsma A, Beek AT, Hageman JA, Westerhuis JA, Hellingwerf KJ, Brul S, Klis FM, Smits GJ.

OMICS. 2010 Oct;14(5):603-14. doi: 10.1089/omi.2010.0049.

PMID:
20695823
3.

The Rpd3L HDAC complex is essential for the heat stress response in yeast.

Ruiz-Roig C, Viéitez C, Posas F, de Nadal E.

Mol Microbiol. 2010 May;76(4):1049-62. doi: 10.1111/j.1365-2958.2010.07167.x.

4.

Minimization of biosynthetic costs in adaptive gene expression responses of yeast to environmental changes.

Vilaprinyo E, Alves R, Sorribas A.

PLoS Comput Biol. 2010 Feb 12;6(2):e1000674. doi: 10.1371/journal.pcbi.1000674.

5.

Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway.

Deveau A, Piispanen AE, Jackson AA, Hogan DA.

Eukaryot Cell. 2010 Apr;9(4):569-77. doi: 10.1128/EC.00321-09.

6.

Strategies for cellular decision-making.

Perkins TJ, Swain PS.

Mol Syst Biol. 2009;5:326. doi: 10.1038/msb.2009.83. Review.

7.

Shifts in growth strategies reflect tradeoffs in cellular economics.

Molenaar D, van Berlo R, de Ridder D, Teusink B.

Mol Syst Biol. 2009;5:323. doi: 10.1038/msb.2009.82.

8.

Metabolic control of antifungal drug resistance.

Robbins N, Collins C, Morhayim J, Cowen LE.

Fungal Genet Biol. 2010 Feb;47(2):81-93. doi: 10.1016/j.fgb.2009.07.004.

PMID:
19595784
9.

TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions.

Schonbrun M, Laor D, López-Maury L, Bähler J, Kupiec M, Weisman R.

Mol Cell Biol. 2009 Aug;29(16):4584-94. doi: 10.1128/MCB.01879-08.

10.

Adaptive prediction of environmental changes by microorganisms.

Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O, Pilpel Y.

Nature. 2009 Jul 9;460(7252):220-4. doi: 10.1038/nature08112.

PMID:
19536156
11.

The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress.

Alejandro-Osorio AL, Huebert DJ, Porcaro DT, Sonntag ME, Nillasithanukroh S, Will JL, Gasch AP.

Genome Biol. 2009;10(5):R57. doi: 10.1186/gb-2009-10-5-r57.

12.

The cost of gene expression underlies a fitness trade-off in yeast.

Lang GI, Murray AW, Botstein D.

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5755-60. doi: 10.1073/pnas.0901620106.

13.

Glucose regulates transcription in yeast through a network of signaling pathways.

Zaman S, Lippman SI, Schneper L, Slonim N, Broach JR.

Mol Syst Biol. 2009;5:245. doi: 10.1038/msb.2009.2. Erratum in: Mol Syst Biol. 2009;5:257.

14.

Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast.

Lu C, Brauer MJ, Botstein D.

Mol Biol Cell. 2009 Feb;20(3):891-903. doi: 10.1091/mbc.E08-08-0852.

15.

Stress-activated genomic expression changes serve a preparative role for impending stress in yeast.

Berry DB, Gasch AP.

Mol Biol Cell. 2008 Nov;19(11):4580-7. doi: 10.1091/mbc.E07-07-0680.

16.

Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast.

Mousley CJ, Tyeryar K, Ile KE, Schaaf G, Brost RL, Boone C, Guan X, Wenk MR, Bankaitis VA.

Mol Biol Cell. 2008 Nov;19(11):4785-803. doi: 10.1091/mbc.E08-04-0426.

17.

Chemogenetic fingerprinting by analysis of cellular growth dynamics.

Warringer J, Anevski D, Liu B, Blomberg A.

BMC Chem Biol. 2008 Aug 22;8:3. doi: 10.1186/1472-6769-8-3.

18.

Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design.

Fazio A, Jewett MC, Daran-Lapujade P, Mustacchi R, Usaite R, Pronk JT, Workman CT, Nielsen J.

BMC Genomics. 2008 Jul 18;9:341. doi: 10.1186/1471-2164-9-341.

19.

Genome-wide analysis of the effects of heat shock on a Saccharomyces cerevisiae mutant with a constitutively activated cAMP-dependent pathway.

Jones DL, Petty J, Hoyle DC, Hayes A, Oliver SG, Riba-Garcia I, Gaskell SJ, Stateva L.

Comp Funct Genomics. 2004;5(5):419-31. doi: 10.1002/cfg.415.

20.

Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation.

López-Maury L, Marguerat S, Bähler J.

Nat Rev Genet. 2008 Aug;9(8):583-93. doi: 10.1038/nrg2398. Review. Erratum in: Nat Rev Genet. 2009 Jan;10(1):68.

PMID:
18591982
Items per page

Supplemental Content

Support Center