Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 42

1.

Urokinase-type plasminogen activator deficiency in bone marrow-derived cells augments rupture of angiotensin II-induced abdominal aortic aneurysms.

Uchida HA, Poduri A, Subramanian V, Cassis LA, Daugherty A.

Arterioscler Thromb Vasc Biol. 2011 Dec;31(12):2845-52. doi: 10.1161/ATVBAHA.111.234997. Epub 2011 Aug 25.

2.

Prolonged infusion of angiotensin II in apoE(-/-) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm.

Rateri DL, Howatt DA, Moorleghen JJ, Charnigo R, Cassis LA, Daugherty A.

Am J Pathol. 2011 Sep;179(3):1542-8. doi: 10.1016/j.ajpath.2011.05.049. Epub 2011 Jul 19.

3.

Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography.

Nahrendorf M, Keliher E, Marinelli B, Leuschner F, Robbins CS, Gerszten RE, Pittet MJ, Swirski FK, Weissleder R.

Arterioscler Thromb Vasc Biol. 2011 Apr;31(4):750-7. doi: 10.1161/ATVBAHA.110.221499. Epub 2011 Jan 20.

4.

Total lymphocyte deficiency attenuates AngII-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice.

Uchida HA, Kristo F, Rateri DL, Lu H, Charnigo R, Cassis LA, Daugherty A.

Atherosclerosis. 2010 Aug;211(2):399-403. doi: 10.1016/j.atherosclerosis.2010.02.034. Epub 2010 Mar 4.

5.

TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice.

Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, Huang J, Offenstadt G, Combadière C, Rénia L, Johnson JL, Tharaux PL, Tedgui A, Mallat Z.

J Clin Invest. 2010 Feb;120(2):422-32. doi: 10.1172/JCI38136. Epub 2010 Jan 25.

6.

Modes of defining atherosclerosis in mouse models: relative merits and evolving standards.

Daugherty A, Lu H, Howatt DA, Rateri DL.

Methods Mol Biol. 2009;573:1-15. doi: 10.1007/978-1-60761-247-6_1. Review.

PMID:
19763919
7.

Immune cells and molecular mediators in the pathogenesis of the abdominal aortic aneurysm.

Rizas KD, Ippagunta N, Tilson MD 3rd.

Cardiol Rev. 2009 Sep-Oct;17(5):201-10. doi: 10.1097/CRD.0b013e3181b04698. Review.

PMID:
19690470
8.

Identification of splenic reservoir monocytes and their deployment to inflammatory sites.

Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ.

Science. 2009 Jul 31;325(5940):612-6. doi: 10.1126/science.1175202.

9.

ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice.

Cassis LA, Gupte M, Thayer S, Zhang X, Charnigo R, Howatt DA, Rateri DL, Daugherty A.

Am J Physiol Heart Circ Physiol. 2009 May;296(5):H1660-5. doi: 10.1152/ajpheart.00028.2009. Epub 2009 Feb 27.

10.

TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis.

Naiki Y, Sorrentino R, Wong MH, Michelsen KS, Shimada K, Chen S, Yilmaz A, Slepenkin A, Schröder NW, Crother TR, Bulut Y, Doherty TM, Bradley M, Shaposhnik Z, Peterson EM, Tontonoz P, Shah PK, Arditi M.

J Immunol. 2008 Nov 15;181(10):7176-85.

11.

Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice.

Lu H, Rateri DL, Feldman DL, Charnigo RJ Jr, Fukamizu A, Ishida J, Oesterling EG, Cassis LA, Daugherty A.

J Clin Invest. 2008 Mar;118(3):984-93. doi: 10.1172/JCI32970.

12.

Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins.

Watters TM, Kenny EF, O'Neill LA.

Immunol Cell Biol. 2007 Aug-Sep;85(6):411-9. Epub 2007 Jul 31. Review.

PMID:
17667936
13.

Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids.

Liu X, Ukai T, Yumoto H, Davey M, Goswami S, Gibson FC 3rd, Genco CA.

Atherosclerosis. 2008 Jan;196(1):146-54. Epub 2007 Apr 26.

14.

Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata.

Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, Pittet MJ.

J Clin Invest. 2007 Jan;117(1):195-205.

15.

Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques.

Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ.

J Clin Invest. 2007 Jan;117(1):185-94.

16.

Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms.

Cassis LA, Rateri DL, Lu H, Daugherty A.

Arterioscler Thromb Vasc Biol. 2007 Feb;27(2):380-6. Epub 2006 Dec 7.

17.

The interleukin-1 receptor family.

Boraschi D, Tagliabue A.

Vitam Horm. 2006;74:229-54. Review.

PMID:
17027517
18.

Inflammation and cellular immune responses in abdominal aortic aneurysms.

Shimizu K, Mitchell RN, Libby P.

Arterioscler Thromb Vasc Biol. 2006 May;26(5):987-94. Epub 2006 Feb 23. Review.

19.

Modulation of atherosclerosis in mice by Toll-like receptor 2.

Mullick AE, Tobias PS, Curtiss LK.

J Clin Invest. 2005 Nov;115(11):3149-56. Epub 2005 Oct 6.

20.

Angiotensin II infusion induces site-specific intra-laminar hemorrhage in macrophage colony-stimulating factor-deficient mice.

Babamusta F, Rateri DL, Moorleghen JJ, Howatt DA, Li XA, Daugherty A.

Atherosclerosis. 2006 Jun;186(2):282-90. Epub 2005 Sep 8.

PMID:
16153649

Supplemental Content

Support Center