Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 30

1.

Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination.

Kuo CL, Oyler GA, Shoemaker CB.

PLoS One. 2011;6(5):e20352. doi: 10.1371/journal.pone.0020352. Epub 2011 May 24.

2.

Adaptation of Clostridium difficile toxin A for use as a protein translocation system.

Kern SM, Feig AL.

Biochem Biophys Res Commun. 2011 Feb 25;405(4):570-4. doi: 10.1016/j.bbrc.2011.01.070. Epub 2011 Jan 23.

PMID:
21266163
3.

Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B.

Genisyuerek S, Papatheodorou P, Guttenberg G, Schubert R, Benz R, Aktories K.

Mol Microbiol. 2011 Mar;79(6):1643-54. doi: 10.1111/j.1365-2958.2011.07549.x. Epub 2011 Jan 28. Erratum in: Mol Microbiol. 2012 Jun;84(6):1189-90.

4.

Recombinant botulinum neurotoxin A heavy chain-based delivery vehicles for neuronal cell targeting.

Ho M, Chang LH, Pires-Alves M, Thyagarajan B, Bloom JE, Gu Z, Aberle KK, Teymorian SA, Bannai Y, Johnson SC, McArdle JJ, Wilson BA.

Protein Eng Des Sel. 2011 Mar;24(3):247-53. doi: 10.1093/protein/gzq093. Epub 2010 Nov 4.

5.

Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system.

Tsai YC, Maditz R, Kuo CL, Fishman PS, Shoemaker CB, Oyler GA, Weissman AM.

Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16554-9. doi: 10.1073/pnas.1008302107. Epub 2010 Sep 7.

6.

Camelid single domain antibodies (VHHs) as neuronal cell intrabody binding agents and inhibitors of Clostridium botulinum neurotoxin (BoNT) proteases.

Tremblay JM, Kuo CL, Abeijon C, Sepulveda J, Oyler G, Hu X, Jin MM, Shoemaker CB.

Toxicon. 2010 Nov;56(6):990-8. doi: 10.1016/j.toxicon.2010.07.003. Epub 2010 Jul 14.

7.

Expression, purification and cell cytotoxicity of actin-modifying binary toxin from Clostridium difficile.

Sundriyal A, Roberts AK, Ling R, McGlashan J, Shone CC, Acharya KR.

Protein Expr Purif. 2010 Nov;74(1):42-8. doi: 10.1016/j.pep.2010.04.014. Epub 2010 Apr 28.

PMID:
20433927
8.

A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region.

Dong J, Thompson AA, Fan Y, Lou J, Conrad F, Ho M, Pires-Alves M, Wilson BA, Stevens RC, Marks JD.

J Mol Biol. 2010 Apr 9;397(4):1106-18. doi: 10.1016/j.jmb.2010.01.070. Epub 2010 Feb 6.

9.

Piglet models of acute or chronic Clostridium difficile illness.

Steele J, Feng H, Parry N, Tzipori S.

J Infect Dis. 2010 Feb 1;201(3):428-34. doi: 10.1086/649799.

10.

An efficient drug delivery vehicle for botulism countermeasure.

Zhang P, Ray R, Singh BR, Li D, Adler M, Ray P.

BMC Pharmacol. 2009 Oct 27;9:12. doi: 10.1186/1471-2210-9-12.

11.

Antibody-enhanced, Fc gamma receptor-mediated endocytosis of Clostridium difficile toxin A.

He X, Sun X, Wang J, Wang X, Zhang Q, Tzipori S, Feng H.

Infect Immun. 2009 Jun;77(6):2294-303. doi: 10.1128/IAI.01577-08. Epub 2009 Mar 23.

12.

Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.

Egerer M, Giesemann T, Herrmann C, Aktories K.

J Biol Chem. 2009 Feb 6;284(6):3389-95. doi: 10.1074/jbc.M806002200. Epub 2008 Dec 1.

13.

Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium.

Yang G, Zhou B, Wang J, He X, Sun X, Nie W, Tzipori S, Feng H.

BMC Microbiol. 2008 Nov 6;8:192. doi: 10.1186/1471-2180-8-192.

14.

Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile.

Dingle T, Wee S, Mulvey GL, Greco A, Kitova EN, Sun J, Lin S, Klassen JS, Palcic MM, Ng KK, Armstrong GD.

Glycobiology. 2008 Sep;18(9):698-706. doi: 10.1093/glycob/cwn048. Epub 2008 May 28.

PMID:
18509107
15.

Processing of Clostridium difficile toxins.

Giesemann T, Egerer M, Jank T, Aktories K.

J Med Microbiol. 2008 Jun;57(Pt 6):690-6. doi: 10.1099/jmm.0.47742-0. Review.

PMID:
18480324
16.

Structure and mode of action of clostridial glucosylating toxins: the ABCD model.

Jank T, Aktories K.

Trends Microbiol. 2008 May;16(5):222-9. doi: 10.1016/j.tim.2008.01.011. Epub 2008 Apr 18. Review.

PMID:
18394902
17.

Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.

Egerer M, Giesemann T, Jank T, Satchell KJ, Aktories K.

J Biol Chem. 2007 Aug 31;282(35):25314-21. Epub 2007 Jun 25.

18.

Entering neurons: botulinum toxins and synaptic vesicle recycling.

Verderio C, Rossetto O, Grumelli C, Frassoni C, Montecucco C, Matteoli M.

EMBO Rep. 2006 Oct;7(10):995-9. Review.

19.

Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins.

Davletov B, Bajohrs M, Binz T.

Trends Neurosci. 2005 Aug;28(8):446-52. Review.

PMID:
15979165
20.

Clostridium difficile toxins: mechanism of action and role in disease.

Voth DE, Ballard JD.

Clin Microbiol Rev. 2005 Apr;18(2):247-63. Review.

Supplemental Content

Support Center