Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 54

1.

Bacterial killing by dry metallic copper surfaces.

Espírito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G.

Appl Environ Microbiol. 2011 Feb;77(3):794-802. doi: 10.1128/AEM.01599-10. Epub 2010 Dec 10.

2.

Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces.

Quaranta D, Krans T, Espírito Santo C, Elowsky CG, Domaille DW, Chang CJ, Grass G.

Appl Environ Microbiol. 2011 Jan;77(2):416-26. doi: 10.1128/AEM.01704-10. Epub 2010 Nov 19.

3.

Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus.

Weaver L, Noyce JO, Michels HT, Keevil CW.

J Appl Microbiol. 2010 Dec;109(6):2200-5. doi: 10.1111/j.1365-2672.2010.04852.x. Epub 2010 Oct 11.

4.

Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs.

Warnes SL, Green SM, Michels HT, Keevil CW.

Appl Environ Microbiol. 2010 Aug;76(16):5390-401. doi: 10.1128/AEM.03050-09. Epub 2010 Jun 25.

5.

Killing of bacteria by copper surfaces involves dissolved copper.

Molteni C, Abicht HK, Solioz M.

Appl Environ Microbiol. 2010 Jun;76(12):4099-101. doi: 10.1128/AEM.00424-10. Epub 2010 Apr 23.

6.

The effects of copper (II) ions on Enterococcus hirae cell growth and the proton-translocating FoF1 ATPase activity.

Vardanyan Z, Trchounian A.

Cell Biochem Biophys. 2010 May;57(1):19-26. doi: 10.1007/s12013-010-9078-z.

PMID:
20352375
7.

DNA oxidative cleavage induced by the novel peptide derivatives of 3-(quinoxalin-6-yl)alanine in combination with Cu(II) or Fe(II) ions.

Szczepanik W, Kucharczyk-Klamińska M, Stefanowicz P, Staszewska A, Szewczuk Z, Skała J, Mysiak A, Jezowska-Bojczuk M.

Bioinorg Chem Appl. 2009:906836. doi: 10.1155/2009/906836. Epub 2010 Mar 8.

8.

Isolation and characterization of bacteria resistant to metallic copper surfaces.

Santo CE, Morais PV, Grass G.

Appl Environ Microbiol. 2010 Mar;76(5):1341-8. doi: 10.1128/AEM.01952-09. Epub 2010 Jan 4.

9.

Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium.

Weaver L, Michels HT, Keevil CW.

Lett Appl Microbiol. 2010 Jan;50(1):18-23. doi: 10.1111/j.1472-765X.2009.02753.x.

10.

Role of copper in reducing hospital environment contamination.

Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TS.

J Hosp Infect. 2010 Jan;74(1):72-7. doi: 10.1016/j.jhin.2009.08.018. Epub 2009 Nov 20.

PMID:
19931938
11.

Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation.

Baker J, Sitthisak S, Sengupta M, Johnson M, Jayaswal RK, Morrissey JA.

Appl Environ Microbiol. 2010 Jan;76(1):150-60. doi: 10.1128/AEM.02268-09. Epub 2009 Oct 30.

12.

Response of gram-positive bacteria to copper stress.

Solioz M, Abicht HK, Mermod M, Mancini S.

J Biol Inorg Chem. 2010 Jan;15(1):3-14. doi: 10.1007/s00775-009-0588-3. Epub 2009 Sep 23. Review.

PMID:
19774401
13.

Mechanisms underlying the inhibition of the cytochrome P450 system by copper ions.

Letelier ME, Faúndez M, Jara-Sandoval J, Molina-Berríos A, Cortés-Troncoso J, Aracena-Parks P, Marín-Catalán R.

J Appl Toxicol. 2009 Nov;29(8):695-702. doi: 10.1002/jat.1460.

PMID:
19629952
14.

Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance.

Harrison JJ, Tremaroli V, Stan MA, Chan CS, Vacchi-Suzzi C, Heyne BJ, Parsek MR, Ceri H, Turner RJ.

Environ Microbiol. 2009 Oct;11(10):2491-509. doi: 10.1111/j.1462-2920.2009.01973.x. Epub 2009 Jun 25.

PMID:
19555372
15.

The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity.

Macomber L, Imlay JA.

Proc Natl Acad Sci U S A. 2009 May 19;106(20):8344-9. doi: 10.1073/pnas.0812808106. Epub 2009 May 4.

16.

Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper.

Michels HT, Noyce JO, Keevil CW.

Lett Appl Microbiol. 2009 Aug;49(2):191-5. doi: 10.1111/j.1472-765X.2009.02637.x. Epub 2009 Apr 25.

17.

The Dps protein of Escherichia coli is involved in copper homeostasis.

Thieme D, Grass G.

Microbiol Res. 2010 Feb 28;165(2):108-15. doi: 10.1016/j.micres.2008.12.003. Epub 2009 Feb 20.

18.

Contribution of oxidative damage to antimicrobial lethality.

Wang X, Zhao X.

Antimicrob Agents Chemother. 2009 Apr;53(4):1395-402. doi: 10.1128/AAC.01087-08. Epub 2009 Feb 17.

19.

DNA fragmentation in microorganisms assessed in situ.

Fernández JL, Cartelle M, Muriel L, Santiso R, Tamayo M, Goyanes V, Gosálvez J, Bou G.

Appl Environ Microbiol. 2008 Oct;74(19):5925-33. doi: 10.1128/AEM.00318-08. Epub 2008 Aug 8.

20.

Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory.

Wheeldon LJ, Worthington T, Lambert PA, Hilton AC, Lowden CJ, Elliott TS.

J Antimicrob Chemother. 2008 Sep;62(3):522-5. doi: 10.1093/jac/dkn219. Epub 2008 Jun 10.

PMID:
18544601

Supplemental Content

Support Center